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PREFACE. A

Ix writing the present treatise on the INTEGRAL CALCULUS
the object hag been to produce an Wot M qnee, lelementﬁzry and
complete—adapted for the JIse a¥ egmners, and sufficlent
for the wants of adv&ncud'students In the selection of the
propositions, and in thé mode of establishing them, I have
endeavoured to exh1b1};> fully and clearly the principles of the
subject, and to ‘h@mtr&te all their most important results.
The process of summation has been repeatedly brought for-
ward, with\dle view of securing the attention of the student
to the ngttons which form the true foundation of the Integral
18 tself, as well as of its most valuable applications,
(,on%emble space has been devoted to the investigations of
the' lengths and areas of curves and of the volumes of solids,
N\ Cand an attempt has been made to explain those difficulties
\/ which usually perplex beginners—espccially with reference
to the lumits of integrations.

The transformation of multiple integrals is one of the
most interesting parts of the Integral Caleuius, and the ex-
perience of teachers shews that the usual modes of treating
it ars not free from obscurity. I have therefore adopted a
method different from those of previous elementary writers,



vi PREFACE.

and have endeavoured to render it easily intelligible by fui
detail, and by the solution of several problems.
The Calculus of Variations seems to claim a place in th

.present treatise with the same ptopriety as the ordinamp

theory of maxima and minima values is included in sthl
Differential Calculus. Accordingly a chapter of the ’r{umsl
is devoted to this subject; and it is hoped that the theor:
and illustrations there given will be found, with Tespect
simplicity and comprehensiveness, adapted tqthe wants o
students,

In order that the student may find jn‘the volume all tha
he requires, a Jarge collection of ¢ ‘m\Jles for exercise ha
been appended to the several W Xera These example
have been sclected from the Oollege and University Exami
nation Papers, and have been\verified, so that it is believec

IbraufibiiaFePedifhs will be found among them.

The work has been’ ea.refu]ly revised since its first ap
pearance, and additides made to it with the hope of increas
ing its utility fo *the purposes of instruction, and of render
ing it still more Worthy of the favour with which it has beer
received, ,JAw’ Elementary U'reatise on Laplace's Functions
Lamé’s Functions, eand Bessel's Functions has been publisher
as o, &eg\uel o the Treatises on the Differential Caloulus and
th?{\'llﬁtegml Calonlus,

L. TODHUNTER.,.

Canpmiper,
September, 1878,
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INTEGRAL CALCULUS.

N
¢\
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CHAPTER 1. K

ool
" Y

MEANING OF INTEGRATION. EXAMPLE\S;’.
1. In the Differential Calculus we hayeva system of
rales by means of which we deduce frow @by given function .
a second function called ‘the differentjdlycoefficient ‘of the
former; in the Integral Calculus we lave to return from the
differential eoefficient to the fungfiofl from which it was
deduced. ¥'We do not say thaﬁwtﬁ’&béﬁuﬁhﬁ’-mﬂ?jﬂi{% of the
Integral Caleulus, for the fundapmental problem of the’subject
is to effect the summation &f\a certain infinite series of in-
definitely small terms; but~for the solution of this problem we
must generally know the function of whith a given function is
hlEéHl&’dfbﬁﬁTEQg‘éﬁﬂf@iéhﬁ, This we now procced €6 shew.
N ....—-—-q.i--—"""/‘—&*"*”"ﬂ -

2. Let ¢ () dbnote any function of @ which remains
continuous for @ll values of x comprised between two fixed
values ¢ and @ Wwhere continuous has the meaning defined in
Art. 90 of ghe Defferential Caloulus. < Let x,, «,,...x,_, be a
series of @ilues between o and b, so that o, 2, w,,..2,_,, b
arc ihoerder of magnitide ascending or descending.  We
propese then to find the limit of the series

R \ '.(mi__ 03) ¢(L&) -]~'($2—-— 5.:“1) qb @31.} + (wa - .."‘.’}'2) ¢ (2‘32} Tt

™ T 4 B-e)8 (),
when #, -a, @,—a,...b—a«, _, are all diminished without
limit, and consequently » increased without limit.

Put &, ~ a=h,, #,— 2,= by, ...d— 2, =h,; thus the series
may be written

JIl"l(l"'f'_(a') +h&¢ (ml} + ﬁu—l d‘)(mn-z) +hﬂ¢ (xn—l)’
and nay be denoted by Xhe (), for it is the sum of a number

T, L ¢, 1



2 MEANING OF INTEGRATION,

of terms of which A(x) may be taken as the type. Siuce
each of the terms of which % is the type may be considered
as the difference hetween two values successively aseribed to
the variable @, we may also use the symbol ¢ () Az as the
_type of The terms to be summed,.and 3¢ (@) Az for the sum, o

We may shew at once that S (@) A can never exceed a
certain finite quantity. For let 4 denote the numerichly
greatest value which ¢ () can have when z lics betweefi @ and
63 then S (&) A is numerically less than (b, + %, bwd+ A,) 4,
that i3 pumerically less than (5 — a) 4. e \ R

We now proceed to determine the limit of 5% (#) Az Let
¥ (&) be such a fimetion of & that ¢ (@)Nsthe differential
coefficient of it with respeet to @ Iﬁc;n\\\)"e'know that the

. N {3 ¢
i ¢ (). Hence we may put

www.dbraulibraﬁﬁﬁ:ﬁ)ﬁh— () v——’:?’b.]"{tﬁ (a,) +p,}, -

by

(@) — ¥ &=, () + 4
L rtin

when % isJudefinitely diminished

AN

-

...........................

¥ (50— A ) = 9 ) +
b BEY (5,0 =h, & @)+,

~ where p,, Psy-4.p; Ultimately vanish. From these eqﬁat.i_ons

we have ‘Qy addition
Kol JORR OB AC YRS

_ .@yw Zhp is numerically legs than (b — &) p’ where ' denotes
-« thé\ greatest of the quantities p,, p,,...p,; hence Shp ulti-
~mately vanishes, and we obtain this result, the limst of S¢ (z)Ax
mNowhen each of the quantities of which Ax ¢s the type diminishes

indefinitely s 4 () — ¥ (@), T
-3. The notation used to express the preceding result is
2
; [ $ @t @)~ @)

the symbol { is an abbreviation of the word “gsum,” and du

. t t A': :}-\ ; y
represents the 26 (1A
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MUANING OF INTEGRATION. 3

4. Suppose that &, h,,... ~, are all equal; then each of

. b— .
them is equal to )?{1, and @, is cqual to a+£- (b a).

]
Hence I (#)dx is equivalent to the following direction:

“divide & — « into » equal parts, each part being %; in ¢ (z)
substitute for = successively o, o + A, @+ 24,.. a+ (n — L)%,
add these values togc,ther multiply the sum by k and~then
diminish & without limit.” If these operations are performed
we shall have as the result y» (b) —+ (@), where  {z)\1s the
function of which ¢ (z) is the differential coeﬁiglent with
respect to &

The student then must ca;refully obseivathat for the
foundation of the Integral Caleulus we ha@a certain theorem
and a corrcsponding notation. The thegrémn is the following:
let 4 (@) be any function of &, and g ) its differential co-
efficicnt with respect to w; let n b5 positive integer and
nh="5—a, and suppose d)(.c) im:;{r\,@ mum@fwgug jfor all
valiues of z between ¢ and &; then the limit when n is inde-
finitely increased of N\

{QS @+ o 42 @) bt b (b ;;.)}

+$ )

59 )= (@ L
The ?wmﬂaﬁ s that th_ua limit is denoted by f ¢ () dz,

\<
so that N [ (m)d:t: =l (B) —r (&
\‘
4 particular case we may suppose a to be zero; then
nk = =&, and the limit when # is indefinitely inereased of

:}.” { (0)+¢(h)+q5(2h)+...+gb(?a—k)}

is denoted by f:b () dee, and is equal to ¥ (B) — - (0).
1] -

j. A single term such as ¢ (z) Az Is frequently called an
element. It may he observed that the limit of ¢ (o) A will
not be altered in value if we omit a fimfe number of its
elements, or add a fintte number of similar elements; for

1--2

/.



4 APPLICATION OF YNTEGRATTON,

in the limit each clement is indefinitely small, and a finite
number of indefinitely small quantities ultimately vanishes.

6. The above process is called Integration; the quantity
b
f ¢ () de is called a definite integral, and « and & ave called

the limits of the tnfegral. Since the value of this definitea, .
integral is ¥ () — ¥ (u) we must, when a function ¢ (] is oD
be integrated between assigned limits, first ascertain Ghe
function 4 () of which ¢ (z) is the differential coefficient.
"To express the connexion between ¢ (z) and ¢ (#) E\Ge{'}]a,v’e
R W
Y B () s

and this is also denoted by the equation \x\\

W

www dhrgubbrany eggdfion ag the la‘at;"where we have no lisnits
asgigned, we wmerely assert thatiir (2} is ihe function from
which ¢ () can be obtained by¥ifferentiation; ¥ (z) is here
called the sndefindte integralof ¢ (). .

A\
7. The pr(}bletg\'éf‘.ﬁnding the areas of curves was one
of those which gav Jise to the Integral Clalenlus, and fur-
nishes an illustradion of the preceding Articles.

2N
N
:00\::' ®
& i
. :"\'."’
\'"\t W i
o

B i

Let DPE be a curve of which the equation is y=d (a),
and suppose 1t required to tind the area included between this
curve, the axis of «, and tho erdinates corresponding to the
abscissie o and b Let Od=a, OB=3; divide the space
AB inton equal intervals, and draw ordinates at the points



APPLICATION OF INTEGRATION. 5

of division. Suppose OM =@ + (r~1} 4, then the area of
the parallelogram PMNp is

hop la+ (r— 1) AL
The sum found by assigning to r in this expression all values
from 1 to » diffors from the required area of the curve by N\
the sum of all the portions similar to the triangle PQp, and
‘a8 this last sum is obviously less than the greatest of the')
figures of which PMNQ “is one] we can, by sufficiently
duminishing X,-obtain a result differing as little as we\pleasc
from the required area. Therefore the area of thé\curve is

the limit of the series RS
Fz{qb(a)+¢(a+h)+gb{a+2)’¢)+ ...... +¢(é_k)]>,
a\,/
and 1s cqual to (b — e} .\\

8. If 4(2) be the function frofd Which d{x) springs by
differentiation, we dencte this b&@kﬁ:ﬁ%ﬂ@&ﬁ’ﬁ&-ary,org, in

[ (x) i ¥ (),

and we now proceed fo maethods of finding ¥ () when & (2) is
given. We have shefn, in Art. 102 of the Differential
Culcutys, that if twelfunctions have the same differential co-
efficient with respett to a variable they can only differ by
some constant qitantity ; hence if yr(z) be a function having
¢ (@) for its @ifferential coefficicnt with respect to sz, then
V(@) + C whiere C is any quantity independent of w, is the
only fo.m{&ha.t can liave the same differewtial coefficient.
Hengay Mecreafier, when we assert that any function is the
integea] of a proposed function, we may if we please add to
suclt irtegral any constant quantity.

. Integration then will for some time appear to be merely

N the inverse of differentiation, and we might have so defined
it; we have howover preferred. to introduce at the beginning
the rotion of swmmation beeause it occurs in many of the
most important applications of the subject.

We may observe that if ¢, () and ¢,(x) are any func-

tions ef

[i9:0)+ a0} do = [, (2) ot [, 00)



5 INTEGRATION BY SUBSTITUTIORN.

. or at least the two expressions which we assert to be equal
can only differ by & constant, for if we differentiate both we
artive at the same result, namely, ¢, (@) + ¢, (%),

Also, if ¢ be any constant quantity

fc¢($)dx=cf¢(w) dn; O

A

£\
or at least the two cxpressions can only differ by a constaht.
8. Immediate integration. 7\
R W
When a function is recognized to be the diffeteutial cooffi-
cient of another function we know of course theubtegral of the
first. The following list gives the integralg of the different
stmple functions ; RS
. o™t dz N
.fd: dd:—m_]_l, f’g-@logm,
ww w dbraulibi r‘y.org.inam N
f ddr= e, fexdw -

2
log,a
[ 8in @ diw = — cg’s@:, f cos & de = sina,

¢ \J
[T\

=— ot &,
o3 .?‘,' »

l sin® @

@

O\ s - . - &
e =~ " Ty
\V

A.§w~l~ Hafa: - 1 tont &
ol S0 4w 2] m

S

1 _:,n.
or =—=gob ' =,
a @

i S Integration by substitution, ~

_ The process of integration is sometimes facilitated by sub-
stituting for the variable some function of a new variable.
Suppose ¢(z) the function to be integrated, and a and b the

© limits of the integral It is evident that we may suppose
@ to be a function of a new variable z, provided that the
function chosen is capable of assuming all the values of x
required in the integration. Put then #= f(¢}, and lct o and
Y be the values of z, which make f(2) or # cqual to a and 5
respectively ; thus o =f (') and b=F (). Now suppose thai

s

O\




INTEGRATION RBY SUBSTITUTION, 7

Jr{x) is the function of which ¢{x) is the differential co-
efficient, that is suppose ¢{x) zd‘z—‘iﬁ) ; then
. :
(4@ do=y®)-v@ ~

=Y {fE)} - ¥{f )] A

But by the principles of the Differential Caleulus, ™

d . ) ! D
BLO g 0@

therefore 1#{ b= if (a)]=’ ¢>{ f(a).]f:ft‘(;)“dz
=[ cﬁ: ’g dz;

hence ] ¢ (z) de = J
“w.\gw d%l. auhbral y.org.in
This result we may write, slmp]y thus

[ $ (=) dm.=f¢

provided we rememhm;\that when the former integral is taken
between certainglimifs @ and b, the latter intcgral must be
taken between c\lxr sponding limits o' and 5"

As\a;;a example of the preceding Avrticle suppose that

f _,3\_: 18 rL,qu_lrc,d Assume # = @'--2, then d_x =-1.
‘\/(206»‘3\ BT dz

and e — x‘ ot — 22 “Thus (

1 da dz
o~\ "\, f«/(Zcm. —_ m J[’\/(sz — $'.;-J @ dZ = ;}‘(_aﬂ_"ze)
N s a—a .

- &
=C08 — =008 —— = Verg " —
& - &

. diz a
Aggm, let f v/ Ba — ) be lequlred Agsume E=5 s
thus e

da: a v [‘ dz 1 de , 7
®

T(=a ad | Ve =ah) e yiBan = & 35 @



8 INTEGRATION BY FARTS.

= in"z=- sin~' ——,
& T

[ 2f1—z—{1-z 1[ —z‘j
_1

Here we have found the proposed integrals by substituting O
for # in the manner indicated in the preoedmcr Article, Thisa .
process will often simplify a proposed integral, but no lul N

can be given to guide the student as to the best assumpﬁ@u

to wake; this pomt must be left to observation and praggice.

12, Integrotion by parts. L
From the equation NS,
d (-f.w) d’u di N\
& T d O

we deduce by integrating both membebg)

www.dbraulibrary. orguw fu —dx{] ju v,
~ therefore dv da, w.u - f dﬂ

The use of this ior@"‘u}‘a‘ is called * mtecrra,tlon by parts.” P
For a partlcular\&e suppose y =% ; then we obtain

[’E{dm—ux f T

For, egxmnple consider J xzcosar de.  Since
puteit

—

R\ con g 1 d5in az
NS ) o de

\\. ) ; . . .
\JFe may write the propose}l expression 1n the forn

f{cdsma’z,d i

a dx

1 -
and this, by the formula, supposing == and v = sin a,
_ asinaz fsinaa; v~

o @



INTEGRATION BY PARTS. 9

o sin a,w CO8 ax

= . - T

£ [
o d
Again, f;p cos aa o = fw M da
N\
Hﬂ f——smaxdm {:\
,\”\ 4

_ &’ sin ax ‘?mdcosaa;f \"’
e J & de TP Q"}

xsmax 2x cos g {2(303 }
/|

R
w sm wx 2x cos ax Z’%’)a 7%
- + T o\¥
a i) N\ }

n ~ -
Again, f % sin aw d — f sl ez G zg dbl. aulibrary .org.in

—
<\ ¢ ¢
f“’\ .
¢4NJ sinax . facosax de™
‘\& = g™ _J-__..-E_ —— dx
\ ¢ ¢ d
~\\s»l .
“\éumw g Qcosar ¢ sin am
£ — —— % — — & dix.
N7 ¢ 6

3 Es oz
\e & . [ . [+
NS (1 + c‘) fe”“ sin ax dae = - (sm aa ~  cos aw) ,
4

& (¢ sin az — @ cos ax)
@+

therefore fe sin ax de =

Similarly we may shew that

¢ (¢ cos ax + a siv ax)
&+

fe cosardr=



10 EXAMPLES OF TNTEGRATION.

13. The differential coefficient of any function can always

be found by the use of the rules given in the Differential

© (aleulus, but it is not so with the integral of any assigned
function. We know, for czample, that if » be any num.

el
&

m 41 ”
but when m=—1 this is not true; in this casc we have)y

f%=1og z. If however we had not previously deﬁnqdighe

ber, positive or negative, except — 1, then fm“‘ de =

term logarithm, and investigated the properties of a.E@(ga;:“it}"a,m,
we should have been unable to state what funéifen would
give 'é as its differential coefficient. Thus wd Hi:iy find our-

selves limited in our powers of integnez’@}ﬂ from our not
having given a name to every particulardanction and investi-
- gated 1ts properties. Y
Ww\;\,_dgﬁlmgggr%gg@ﬁt any proposed integration, it will often
be nocessary “to use artifices hich can only be suggested
by practice, ON*

ad
ny

14. We add a few paideellaneons examples.

KN
¢ \J v ‘[ — L
Ex (). [Vid-aTde Jo doe = u

e @i+ [, by At 12, sup-

poa;;lz;\u;}f (@*=a%) and v=a, 7
T e L Rk
AN Sy la— 2t Vid—a) IV (a*—o
-'\”\‘;tTierefore, by addition, '
s s 2 . da
2_’1!(@ —ade=a/(0— o) + & fm),
therefore J‘.\f (0" — &) dz = ay(@= o) + ¢ sn? 2. Art. 9.
] 2 2 3

da

Ex. (2). V@ 1@y



EXAMPLES OF INTEGRATION, 11

Assume /(o + o) = z — 2, therefore o’ = 7* — 2za,

dx_z—-’b"
dz &z
da |
Hence f«-/—(?‘i"f) [,\/I’w +a’!)dz f——.logz R
=Tlog {# + /(" + a}. §\\\
da ‘.x\../
Ex (8). [W,n —a) ”"\“"

As in Ex. (2), we may shew that the vesult, ra\\
log {z + +/(4"— N\
gz + V(@ —al}. O

§

Ex. (4). f«!(m"-{-u?) iz, &©
v 0 %
f\/(x*’+a)da:—a;\/m -]-a,) —(_Hgi—i{;j)myﬁditglg
z -+ m’r*' Y1 Zde St f
a/(a:“+a‘e) e, (& +a®) V& +ah
&

Also f\/ (@ +a?) dx

therefore, by addltlon,,

2%/(&#-%\) dr = o (o + @) + @ [ da

Ve +d)’
therefore sﬁ/?ﬁ + ') dap = aw‘(w _Hf) = log (o +4/ (& +a")}.

i"\‘

Slml\lﬂl“y fV(a &%) dz ’*‘3*\/(-532— @) ;zlog {# +/(@ - a)}.
4 W x. (o __...__...d_rx_.__.._
\"} B ) f«/(w-}-bx—l—cmﬂ)'

de - 1 de

V(@+ bz + o) vc[:/m
4]

G

RN E

A 2¢/ . d¢*



12 EXAMPLES OF INTEGRATION,

Putting =+ 2% =g, our integral becomes, by (2) and (3),

%} log {2c 4 b + 2 w/¢ o/ (a + b + ea”)],

wheore we omit the constant quantity ;/16 log 2e. (\)

.‘/
b £ Y
In a similar manner, by assuming z =g+ - we ma{(‘m ale
Ze

f N (@ +bx + cx*) dz depend upon Ex. (4). K \:\\
dﬁ :’\\\'\'
Ex. (6). €
V’(a 4 bw — - ety " }\

f A (4 b — ca®) }QJ-__—(}%‘-_
gfbrau”ﬂm ar} ra i \/ (c ; k;gﬂ)

1 [ L die
! £ F3
A0 e =+ O b
S (o))
Puat A fUI 4;2:-— and z for mﬂgbc ., then the integral
becomes + fz oL which gives 1 sin? < | that is
’OQ v’ V(B e }
e 1 ., Z2ox-—b
) Vo™ JlEac+ 6%
O .
<> " In a similar manner, by ARSUMing z = & — % we may make

]

f V(6 + b — ea®) die depend upon Ex. (1).

-da:

Bx (D). [o—as
Put = ! then I__‘{Z_x_ = J— 1 de e
y' o lav@ =y T le -y ™



EXAMPLES OF INTEGRATION. 13

== f«/(ljw % lf«/ ‘“‘“‘m _“’y

I Y
= E sin E . o
Sinee sin“%—%cos‘ig =% a constant, wo may also \m\g\
out last result thus, _ N @)
a d{ﬂ 1 LG “\ “3
jm VFE—a) a > N &
do N
Fx. (8} SN E T \/
Ja (@ + o) D
\&l
. 1
By putting »= 7’ as In ]:‘n {?ﬂhrau 1b1(§1d§.coergfﬂ¥ the
. as Q
required result “’.\z
RS
1 \ N
“log 2N T
@ a Pt + %)

Ex. (9). [ d"’i:;w iid f
1
p. ;&}—a)"'_ " — l(m—a)”‘_”
(N
{\.Q' [ﬁ =log (& —al

’§~./ Je—a
“T{lese are obvious if we differcutiate the right-haud

kﬁﬁlﬁbers o

v Ex. (10). fm, =

C de 1 1 1
,Im2~d“=%f(m—a_x+d)dm
dx 1 {de
Qa r—a Zajeta




14 EXAMPLES OF INTEGRATION.

=L log (w—a) — Ql—a log (5 -+ )

2a
L log %
“3q €y +a’
. r—a .. o B— @ L
This supposes Pl positive; if P be negative, “,P: \
must write - \\\
N\
f“”di?“_ﬂl La—= \J
- m’—ae = 2@ 05 ar+ ;1‘:- ’""\N’S
dx ¢
PAY
Ex. (11). fa-i—bw%—cm" QS
[’ dx __l_f dr ,\\’}
a¢+dztort ¢

F] .MG__bJ
(“’Jr Zc) +\ W

‘,o

W dtﬂﬂéﬂﬁraﬁ’ PeEdlyative, we .obtd,m the integral by Ex. {10),

.\

1 log 2czc+b & (I — dac)
J(b - ‘I'GGL\ e+ b+ /(5" — dac)’

dae —
{ e be fmé}twe then by Axt. 9, the infegral is

o 2 tan™ 20w + b
'\w \{ {4uc — 5} A (dac — 8"

4 f dwe+ B
\\(1,2) Ja + b + ca® dz

' name]y

2

Ab Ab
\ A:c+B -[A"c+2 +B— 20&@
/laFbeter®®™ & + b 4 ca®
_A[ 2ew+d AN de
T2 af+bw+cx“dx+(3'—_2§)fc?¥!-bx+cm”'

The former integral i s 4 1og (o + bx+cx”), and the laster

has been found in Ex. (11).

BEITRAE
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ch:
Ex, (13). - ,
” dz feos wda f dz . .
:J —— = g,lfz':smm,
Jeos cos” @ 1-
_1log } , by Ex, (10),
L)\
1o 1+si]11:_1 ot [T ) ~~:§‘\“;'.
T 27%1 _sim € (4 277 Y
.. 1 dx T .“~'\ 3
Similarly [ e log tan 5 \."\'\L
; i \/
s {E ~ { \
Ix. (14) (,'/+ beose’ d ,’dm—_# b st
v
+ b oo f
- B € (blll = + G.G%\(g)jﬁxév{ﬁ%awo?ghnz)
ssc'g'— dx

—fa—i\“b—t-(a—-b)tcm
¢(\J

\=~§\f _ g if 7=tan >,
.ﬂ) a+b+{@—b)s"’ 2
Hencg\ 1f a be greater than b, the integral is
'S _ y{a —b) tan z
'%u ~tan? V,(a — b) 2 - tan™ —_—2
(ﬁﬁ b o+ b) A — b yia+b)
S \;md if @ be less than &, the integral is
o 1 g # Y04+ a)
- V=) By —a)—yta)
1 v(b—a)tan§+l\/[b+a)

. .tha.b I8 - z ]og . .
V=D - aytan s -y +a)

bl

15
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To find f __dw___ assume @ = o + z; thus the integral
a+bsing =

N

2
becomes [ T bi —, which has just been found. Or we way
proceed thus,
f__ ez ._[ dz O\
a+bsing Ee\
' o 2 o _\ ;
(sm. o ¥ cos’ A) +2bsin " 3 co‘ 3
- "N
J sec’ de . m'\’;,“
1+ tan*2 ans
o1+t 5) "'23’.“{1*2
ol dz o
=2 - =
e S RS

w.dbraulilpar Y zgin + 2 and the mt,qcrrgﬁ hecomes

2 ~~:“dy .
. 7

o J+1“5

and this can be f\and as before.

Ex. (la\\'Let. ¥ () denote any function of &, and let
¥ (@) detiote the dnverse fanction, so that Yl )] = if
the nthb‘ral of +Jr{2) can be found so can the mtegral of

-‘;r"‘(b) For consider j"ab” () de; put 7 (w) =2 then
"h 'q'r( }: thus
Q  (a) d =
A ) dar = d % ds = 2~ |wde = 2 — A (2
| In any of these examples, since we have found the in-

defimite integral, we can immediately ascertain the definite
integral between any assigned limits. For examole, since

de
i' [7(? Ty~ log iz V@ +al),
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therefore

f d(xéj—ﬂj—m”_) =log [20 + Q’{{Qa.&)* + @’}] — log {a + /(a® + %)}

k4 N
15 The integral fa™ " {a + h™)7 da can be found imupe-)

- e P e z o "
dhiately if Tisa positive integer, for (g 4 52")" can theén'be

expanded by the Binomial Theorem in a finite seriegf powers
of @, and each term of the product of this-serics{by a"> will’

= be immediately hitegrable. “There arc also twalgbher dases in
which the integral can be found irmnediatel{’.‘ »

For assuwe @+ bat =4, /:\

e i

/

} 1

=-1
Iagilibrary .org.in
e ey

PP n 4" N\
thorefore x= Gq_?;f) de @ﬁ“’\(ﬂ

» dt j ’» ‘n‘&

N

Hence f$m-1 (a s &%n) E(ﬂ‘??:f:f ']'.wm‘I (a, -+ " ¢ Cé_f dt
Q )
O 4 [ (T a) B
LA\ 7nh ) - .

=

m & TN 21,
If . be Ggoditive integer we can expand (¢~ a)” in

a finite serjeglof Jowers of ¢, and each termi of the produmet
of this sexiés by (7 will be immediately integrable.

-4
7 ~

\. £ Ll T Pl

Apain, j:c"‘"l {a+ by dr= [w T (ag™ 4 b)Y da;

.”\Q; el

<\§;nfi by the former case, if we put ga™1 b= this is im-
mediately integrable if

: o
A
—n
be a positive integer; that is, if %2 +‘§ be a negative infeger.

TLG ' 9

N
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In the first case, if i?: were a negative integer the integral
might still be found, as we shall see in the Third Chapter, and

similarly, in the second case, 1f s Y were a positive integer:

but as in these cases some further reductions are nocessary, wea, .
do not say that the expressions arc tmmediately integrable, {8 %)
. Cod

« \J
Ex. (). f;{:"’ ‘a+ m}% de. ) ,\.‘
m | / ¢
Here P 3: assume a+x=1¢"; the mtegml 'bécomes
DN

2 f (& —ay n*dt or 2 f (#— 2@3"\ @'t dt,

AT TN B}JI alﬂlgral "y-org. in z(ltﬁ ‘ \ Q‘t‘i

- . {t? - _5". 3 }

: Hel’%'?@’{;—'l, 7= 2, E= 2, thorefore —+;;—-—- 1.

1 de_ ¢
f-v @ ot

“\ZA‘ssume 22 1=¢; thereforc o’ =

~O
Ao J o _ | B g
| Flap @)

Substitute for x and % their values, and this becomes — f dt,

which =~ ¢ or —\%{--1—).

N
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Ex. (3). g
K (as +- xz)!‘
Here m=1, n=2, L= _:i’ therefore ™ 1.2 = _ 1.
g 2 n g
N\

- . @ da at \
Assuine ¢’z 4 1 = £ tharefore ?9 =g G (c‘_bf\){\
diﬂ ;“ -
— « \/
l‘ tle :f dt die 1 I@“ ]'Ng;
Hat+ayt T a4 1) s _'Eaj@
P
@ A
TEvEE Y

N\
EXAMPLES(S
wstabrauth ary.org.in
f_._L__ g 328
V=80 = T G

2. jloﬂmdx—-w(lowm ‘13

v

. - ..',\ .
3. a2 [{J(‘ & {gkl}’;--g‘—' ] W — .
./ ; \ I ]- { : . PR ) + I} ’

" L)
4, Jﬁsiqﬂ@@ = —f cos § 4 sin 8.

. JOF
2. i\g i tan™ ("),
\

Q %, f\/(m“) da = /(ma 4 2) 1 m log | o + Jm+ 2}
This may be found by putting @ = 2%

1 k]
7. |ztantade=" —;i tan™ & — ‘L-.,c

8 f(l—cos@gdx=%?__ 2gin & +%2m
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*xdx 1- 1
9‘ f(l s h g Nl
" atda 1 o'+t
10. ! P g Sl log e
v 2 -
1. ( {202 ~ &) do = Q'GT@ & (ox — ) + E;— sin® 2 \C\
C ade A O
- 2. Wi 2 _ A8
i ’ f’(‘)ax-ﬂ::c) —JPam — &)+ avers™ e A A
&
i dax . 3 O
g —— = - B — G 3k
N = el LA CRL RN 6{5#.}3,;
1 N
+eose . - ¢*{
14 ! Pt dz = log (x4 =in x). ’i:}\
NWW]SH.JT‘E'{ %xgiw x tan % cf;f'*
16 f L de A
© Jalogar =7 o Gogar
17 J log {100 o) d,qf\log a. log (log &) — 100‘9"
day o o o (2 —1)
Che —— E ;1'(’ F 1 .
A 18 f&-{-;{@ml) 3 + 4 log {z+ +/{w i}

19. ~§?«‘ﬁﬂ;2~/& ){(x';l)z.;-%(x—l)wx}.

«3

_,I,l\*‘f{@» U e sinmacosnade=

¢ asmn mn)yx—{m+n)cos (m-+n)a

') Fl a4+ (m+n)
_l“{;“f’ asin (m—n) £ —(m—n)cos{m—n)z
2 a + (m—n) )

21, fe”“ cos* e dw =4 fe"‘ (cos 3z + 3 cos &) de

&

=5 (3 sin 3w — cos 3=} + -3% {(ginx — cos @),
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22. j V- o) da="

o

2o
29 _ = '7_"“;
23 [ ¥ (2aw — &%) da: 5
20 @

24, [ vers " = die = et " \\
SN & ,.\ K%
Proceed thus; let vers™ = ~6‘ therefore # = a (L= co% 6‘)

\ I
and tl:e integral bccomesf af sin 8 dé{\v
RS
L. L Sma® \\
25. j avers” —dr=-— -, N
0 ¢ 4 <{'
nza s N\
24. I 2 vers™ 2 de= l—lgi . {‘t”'
Ve ¢ weqiw r.dbraulibr ary.org.in
av. f sin® G cos’ 8 df = —2; &
o 1: N\
dx - x T
25, [ 5
Sin @ + o8 Qﬁslog tan (2 t 8
@ N{a £ b+ o)
PN\
'JEWI = -} and this becomes a known form.
I,
v~ __sinMz(-a) 1 loga
‘30 # ~—v—51n lade=—-"— § a5
Qf\ » Tlus may he obtained by putting sin™ x= 2.
int e
. f S Y de=6tan 6+ log cos 6, where sin 8= .
(1 —a?)?

32. f_di_ _14( ot 8+ cot? 6) where x—acosﬂ
(*—af)t ¢ e

sin® xda (a +nd  _Jotene w

33. fa+i’:§§' @\ a-sz tan Ja+h) T
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s a+ bz’
34, fq J{a + b de = (“"oﬁﬁ . bg) (a+ bat)l,
dz _(.r~1 J(1+¢) ~
2u—l 4 t‘\.\'
36. [ ban®™ 0 dg = .. f fan™™ 8 76 AN
| It — 1  \J
A e (e D
9nT1 gy m ( 1,:¢+(,,}, d,
# being = tan 8. RS,

37. Bhew thatf

sin Mg sin we die and {:\; e COR T i AL
[\

T .
zero if m a,nd 7 are mlegmxz integers, and =, if

and
wwrw.dbr auhbral ¥ o”f‘gﬂ are 6‘3%{&'5 mtegéa's

38. {{ og {-*)} de=uw koc':( 1 3z jlow—} +b?"10é,, G

cot™ @
[ i+ 2)1}{‘%\—* 8 tan @ —log cos #, where cot € = o

"2a 4+ @ } _al\/(fl—ﬂ"
a+x"\/( @+ ) da = V(@ - =~ Wia+ay

Os/

39.

Assume g+ bx" = 2% /
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CHAPTER 11

RATIONAT, WRACTIONS. '\

~

16. WE proceed to the integration of such expfesgions as
Al

A+ Boy O+ W 5
A+ B+ Ca' .+ Nom XS

where A, B,...A', B,... arc constants, sa° i\,ﬁﬂ: both numerator
and denominator are fintie rational fu,}ctions of m. If m be
equal to @, or greater than », we nfdy'by division reduco the
preceding to the form of an hitegrdbifanlibicnyefrginnd a
fraction 1n which the numergtoe is of lower dimensions in x
than the denominator, As'thé intcgral function of & can be
integrated immediately, wél'may confine ourselves to the case
of o fruction having 8\numerator at least one dinension
lower than its denomivator, Ti order to effect the integration
we decompose t e':}‘mtct-ion into a scries of more simple frac-
tioms called pawtrad fractions, the possibility of which we pro-
ceed to dempustrate, -
AN/

Let :Li}';bb a rational fraction in its lowest terms which is

(\¥ .

to hadecomposed into a serics of partial fractions; suppose ¥
a dunction of & of the #™ degree, and I a function of = of
tha (n—1)" degrec at most; we may without loss of genc-

~\\.rality take the coefficient of #™ In ¥ fo be unity. Suppose

Velz—a) (z-bf (2* = 2ux+ o 4+ 87 [a? — 2yz + 4 + &),
so that the equation V=0 has

C ot
. ¢ )
(1} one veal root = o,

(21 v equal real roots, each = b,
(8) a pair of Imaginaty roots « + 8 +/(— 1),
(4) s pairs of inaginary roots, each being v + 8 4/(— 1)



24 BRATIONAL FRACTIONS,

By the theory of equations F must be the prodnet of factors
of the form we have suppozed, the factors being more or fewer
in number. Since Vis of the »™ degree we have

I+r+2425=mn

Asgsume
o A4 -Bl B2 -Ba B’ ( \:\
Voiat mobr T e et ey
. . Oia‘ig__ O \
Pt '\'(
_Elm + _F: E23} + Fg \ E.-:m + F‘

(2" — By 4o 4- 8 + (o — 2y 87y i\.BH Dyt 6
where 4, B, B,,...0, D, E,,... are consthits which, in order
1o justify our assumption, we must shbiwdan be so determined
as to make the second member of hesabove equation tdendi-
cally equal ta the first. If we bpilig all the partial fractions

Ww"ﬁdigr@tﬁ%ﬂﬂﬂgﬁydaegﬁﬁﬁinator and Add them together, we have V
for that commen denominatoriand for the numerator a fune-
tion of @ of the (n~ 1)* degrde. If we cquate the coefficients
of the different powers 8™ in this numerator with the cor-
responding coefﬁcielkt&;h U, we ghall have n equations of the
first degree to deterinine the n quantiives 4, B, B,,... and with
these values of 47, B,,... the second member of the above
equation becoires identically equal to the first, and thus %:

is decorapgecd into a series of partial fractions.
I#VF involves other single factors like @ — a, each such
O\ D !

fadtor will give rise to a fraction like o and any repeatod

\ Yactor like (% — b)" will give rise to a series of partial fractions

of the form @ -—lb)” (w-—?b L In like manner other

factors of the form @~ 2zt 4 8 or (28— Lye 4 ofF + &
will give rise to a fraction or a series of fractions respectively
of the forms indicated above,

17. ‘_Thc demonstration given in Art. 16 is not very satis-
factory, since we have not proved that the n equations of the
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first degree which we use to determine 4, B,, B,,... are tn-
dependent and conststent.

A method of greator rigour has been given in a treatise vn
the [utegral Calculus by Mr Homersham Cox, which we will )
Lere biicHy indicate, Sup]iJ se F () to contain the factor
& — o ropeated n times; we have, i A

(@) = (v - af ¥ (o),
¢ () ¢ (&)
) z)
o __ s _*Oy@¥® @
Flo) " [o—af ¥ (@ (@ —a)" 4 (@) A @)
Now ¢ (o) — ¢ () V() va_mshes when\w*-a and is there-

¥ (a)

fore divisible by =z —a; suppose the \quotlent denoted by
X (), then \¢

(_i’ (:t:) rm) 3 ma“h'krary.org.in
“ET “‘"‘Wrc) @) o
o XAE () and
@—a)™ ¥ (@)’
¢ ()

thus by sucoessive ﬁﬁexationh tho dwomposﬂ:wn of F(D)

The process may now b repeatcd on

completely effecté\sr In this proof o may be either a real
root or an imaginary root of the equation F(a)=0; if

a =2+ B HD, then 2— 8 (—1), will also be a voot of
Fa) = O\lét b deuote this root, then if we add together
the twespartial fhactions

& w1 e0)
© Vo Gmar U Y0 @

::We shall obtain a result free from V(=1

18, With respect>to the integration of these partial
fractions we refer to Examples (9) and (12) of Art. 14 for 2l
Le+ M
T i

hereafter. Sece Art. 32.
Having proved that a rational fraction can-be decomposed
in the manner assumed in Art. 16, we may make use of

the forms except - and this will be given
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different algebraical artifices in order to diminish the laboir

of determining the constants 4, B, B, .... ‘The rmost useful
consideration is, that since the numerator of the proposed
fraction is 4dentically equal to the numerator formed by
adding together the partial fractions, if we assign any value « N
to the varable & the equality still subsists.

p \:\’
19. o determine the partial fraction com-espomi’z’-ﬂg@ d
single fuctor of the first degree. N
¢ ()

Suppose Fla represents a fraction to be'»{fséémposed,
and let F'(z) contain the factor #— a once ; ass;unle
' ¢ ¥
@ _ A .x_.@j\a'\ 1)
Fla) "w—a "Ly Ve

- . LR \w "
where 4 Is a constant, and x (%) Srepresents the sum of all
rww . dbraulibrary erg.in Y (';Q 3

3
»

the partial fractions exc].115iv‘gj§f :'c—ila »and Bz} =(z—a)y ().

From (1) <

B () EV (2) + (0 — a) y (@) oron oo (2).

In (2), which holzds}b\r any value of #, make z = a, then
2T -4y,

N & ()
theref(fr\e,:\j“ A= 1!“(__“) . |
Siqgé':F" (w) = 4 (@} + (= — a) ¥ (z), we have

\m‘ @)=y (),
therefore , A= ; (_(% ]

20. To determine the partial Jractions corresponding fo o
Jusctor of the first degree which is repeated, ’

Suppose F (x) contains a factor o — @ repeated n times,
and let F{2) = (2 — a)"+ (). Assume

—
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B AL A A A x()
Fla) (m—a) (o - a) " (w—ayE z—a  Yx)’
wlhere ‘T’_g% denotes the sum of the partial fractions arising
from the other factors of F(z). Multiply both sides of tha <"
equation by (@ — a)* and put f(x) for % (w~—a)*; thug Oy
NS ¥
' y z n—1 (.’L‘, \J ]
S@)=A,+ 4, (0 —a)+ 4, (z—a) ot o) +19}f:@3@-a) }

Ditferentiate succeséively both members of §His identity
and put @ =a after differcntiation ; then Y
F@=d, D
f(a):ﬂp ..’\;'
Frlay=1.245"
Tt . widbraulibrary.org.in
ARORS: TR

A%
’. % -

Fr a2 |n-14,.
Thus 4,, 4,, ... A &e determined.

- ¢(\J N . .
21, To deterinine the purtial fractions corresponding to
a pavr of imagigary roots which do not recur.

Tet P

i B
7

e N/

Jdenote the fraction to be decomposed ; and

@ £ Ba/f=T) a pair of Imaginary roots; then if we denote
I.hcseiswﬁs by a and b and proceed as in Art. 19, we khave
for,the ‘partial fractions

o $(x) 1 $() 1

O Flao-a ™ 75 acp
| BSuppose %% = A —B,/(-1); then since gég may be
obtained from —?,,((% by changing the sign of 4/(~1), we

st havo $ (B

) =4+ B4(—1). Hence the fractions are
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_A=By(-1) A+ Byi=1)
c—a By= 1 ™ s—ak By 1)

22, Or we may proceed thus, Suppose 2* —prt q\to
denote the quadratic {a,ctor which gives rise to thes p"{lﬂl‘ of
imaginary roots 2 £ 84/{—1}; then assume K7,

@ _ Lot M x@ 30O
£z) &-prtqg )N
so that F(z) = (& — pr+ g} {z). LIL%@V by F(z); thus
b (x)=(Le+ M)z )+(.}3-}3x+g_v) (#)urin-. (13

W, dbgﬁwbﬂw ﬁ) @ either of the values which make

@’ — pa + ¢ vanish; then (1 reduces to
& () = (0 D) A @) (2,

By the repeated gibstitution of pa—g for * in both
mebers of (2), we ghall at last have @ ocourring in the first
power only, so thtﬁ\t\he equation takes the form

@ PrrQ=Px+q.

Put fm\m its value o+ 3 4/{—1) and equa,tc, the coeffi-
cients Of"t}le impossible parts; thus

.,s'\ P =P and therefore also ¢ ="

- N Hcle P and ¢ are known quantitics, and P and Q in-
“\Yolve the unknown quantities Z and M to the first power

only, so that we have two cquations of the first degree for
fmding L and B,

28. 1% determine the partial fractions corresponding to
a poir of maginery roots whick s repected.

We may proceed as in Art 20. Or we may adopt the

following method. Suppose #°—px -+ q to be the quadratie
factor which occurs » times; assume
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p@_ Lwtd, | Lg+il, Lot x(@)

=1

V)~ w—paeq) | laimpatgy a-prtq” Y(@)’
so that Fle) = (& — pe+ )" 4 {2). Multiply by F(«); thus
$ (@) = (Lot M) (@) + (Lo + M) (6 = pr+ ) ¥ (@)
Fo (@ —pr ) (2) (1).\\

Now ascribe to o either of the values which | make
a®—pa + g vanish ; then (1) reduces to K w:
¢ @ =(La+M)¥@. LY
Proceed as in Art. 22, and thus find L q,uci M. Thea
from (1) by transposition we have N
o\
& ()~ (Lot M)$ () = Ly + W pr ) () ...

The right-hand member hadl¥ %%‘th{ary 0f§(_,t01‘ of
every term: hence as the twovmembers are identical we can
divide by this factor. Let, ) {#) indicate the quotient ob-
tained on the left-hand sidey ihen

¢, (@)=L ot M, Hf\(w) + (Lo + M, _2) ('~ pz+q) '# (=)
¥rom (2)‘ \e find L, and ¥ _, as before; then by trang-

position BRQ ddbivision

&, v"f)‘i(l s+ M W ()4 (L + 2, Yo prt )y () e

" and s on until all the quantltles are defermined.
AN

" \ ¥

\ Take for example (@ '—l-x T T

to

As.sume it equal

L+ M, | Lao+M, | x@
rae+1f  2+oe+l @+1)*
then o — 3o - 2= (L o+ M) {z + 1)
+ (Lo + M)+t l) e+ 1)+ @ +o+ Dy (@)...3)

N\
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Suppose a® + x+1 =0; thus the equation roduces to
=3 -2={(Lwo4+M)(z+1)
= (Lot M) +22+1)
Put —a—1 for &*; thus "

N\

L —de—3={Lo+M)z=FLa'+ Mg AN

~ T @+ )+ Mg, O
thersfore —d=—L + M, and -3 =— L3 N
thus L,=3, and #,=-1. ’M:\g'

From (3) by trangposition
& —Bx—2— (3z-1) (w+1)°
=L+ M) @+ + 1) @RV @+ - 1)y (),
. The left-hand member is — 3-{,"’:”—: 4o’ — 4 —1; divide by
wwrwadhray W?I'Mﬁ' in . :: N
— Bz -:-1)=(Ll$+M1)(@fPitI);+(w“-l—w-ﬁ—l) x (@) 4],
Again, suppose o° ¥ +1=0 ; thus X
—Sw—1=(TaH M) (& + Zc+ )= Lot H)=
_ . L e+ 1)+ Ma;
therefore -\3“= —~L 4+ M, and ~1=~14;
thus x:\:“:Ll =1 and M = -2 , »

:Eliu} the partial fractions corresponding to the quadratic
facfor are found. The partial fractions corresponding to the
factor (x + 1) may then be found by Art. 20. Or we may

w\ii\from {4} by transposition and division by &'+ x + 1 obtain

D

W

vl

—{(&—-1)=x(z)
Thus :
X@ __w=l __ s+l 2 1 . 2
@+ 1) (o + 1) @+1? " @xly 2+l (@i
therefore
P PR Sw—1 x—2 2

- S 21
@rerlie+ir @rerlt T v el T EIn T a1
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24. E 1 Bequired the integral of Srs;l
e JX&T'DP 3, equ g’[ c‘ 3 T 2
By division we have
B +1 ‘3 S — 20
B2 m—{—la-{- PR O\
350 — 28 A B O\
Assume S S 1 T2 A9
N/

thercfore  352— 20 =4 (» ~ 2} + B (x ~ 1), \
Make 2 successively equal to 1 and 2; then O
3520 == A, or 4 =—6)
70-29= B, or B=,\dl;

£ 4 \~
therefore bz + 1 . 41

Fogred” =8u+15 ey +o—
\-.rwﬁ-.f dbraullbral y org.in
5
themforg[ . —I—Zd '___“Pldﬁ} GlOg{ '])+‘ﬂlog(a: 2) T L

™
L |

NS Oy ,--»’
Required the mteg@,l of 2% - 91, +90-128

— 55+ 8x+ 97
Since «* — 3 &}\Bx +8={x~ 3P+ 1), we assume
9 +9;c—128 A B, _+ _B ./'- Y

B 4 B+ 9 Tzl (x— 3)
theruf@{gbx +9w—-128=A (93*3)"’4-31@+1)+Bg{:1:+1)(w--3). -

w4

\ e xm3 and 1 suecessively, and we find

,__.,r"'_

\y B==5 4=-8
Also by equa,ting the coefficients of @', we have
9=4+B, '
therefore B,=17;
therefore

Oz + O — 128—d.£————810g(x+1) + %

. i ,
=5+ 3w+ 9 +17 Og(m 3
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Required the integral of ( - i)—:;_—_k_l)'

Assume —%
_ (e — (2 + 1)
4, A, 4, A, B (,r+D >N
*(Tc—l;‘+'(_ '1) e&-])**'w—1+m+1 F,Hs"t

therefore @’ +1= {4+ 4,(x—1) +4,(w—1+ 4 {f— &,ﬁ \o +1)
+{B(«;ﬂ;x+1)+{ox-yp) (@ + e 1) (1),
Put = 1, then _2=24, A (2
therefore 4,=1 ' ‘\\
Frdm (1) and (2} we have by. Sl;B%rELLT’an, _
MRS B N S | {3~=~1)+A o1 - ) (1)
B(;@ —~'U+1)+(0L+D} (+1)) (2 —1)"
Divide by 2 - @;}en
x+1=A4 (2 +‘£¥{+1) (4,4 4, (&~ 1)+ 4, (o~ 1% (7 +7)
tB‘{\f g+ 1)+ {(Ce+ D) (z+ 1)) (- 1)°..(3)

b t?zs—] then 2=34 +24,
l.}wl%?bre A, =—1. '
,»\*:\, From (3) and (4), by subtraction,
Ca=l=d (@Pre-+ A, (- 1)+ {A A 2 1)) (2= 1)z 1)

+B @ -2+ 1+ (Co+D) g+ 1)} (2—1)"

Divide by x - 1, then
=4, (®+2)+ d, (¢ +o+ 1)+ A+ 4, @~ 1)} (@ + 1)
HB @'~ e+ 1)+ (Cr+ D) (@ + 1)) (o —1)*...(5).
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Put =1, then 1 =34, + 84,4 24, wocovrevennn.. (6);
therefore A,=-1
From (5} and {6}, by subtraction,
O=A (z—1)+4,(@ +5—2) +4, (1) +4, (& —1) (7 +1) N
HBE -2+ D)+ (Ce+ D) @+ 1)] (&~ 1),.\\
Divide by & — 1, then : A oM
O=d +A4A,@@+2y+ 4, (& +2+1)+ 4, +1)
+{BE -2+ 1)+ (Co+ D} (@ +1}}($\—N ...... (7).

Put £ =1, then 0 =4, + 34, + 34, + 2A ............ *);
- I \NY
therefore 4,=% \s

Irom (7) and (8), by subtractiony™
d=d4, -1+ 4, &+c— o)‘*”@"t"éibrﬁlhb‘afy .Org.in
+ (B (@~ :v;ifj’{9+(0~c+ D) (z+ 1)} (z — 1).
Divide by @ -1, thc»\n N
0=4,+ Ag‘(x.-if@ + A (@ a4 1)

FREE e+ D)+ (Cot DY (et 1), 9.
Put 2 = &7 then
o;~" O=A,+Ad,+ A, +8B..coivriaenn, (10);
theré@xe . B=4.
}'rom {9} and (10), by subtraction,

\\:Z%'A(H:LHA (@ +2) + B — @ —2) + (Cr+ D) (+1).

Divide by ¢ + 1, then

0=d,+dax+B{x-2}+Cx+D.........(11)
Put & =0, then
A, -28B+D=0.....c.0cciiiiimnnnn. (12);
therefore _ D=1

T, 8
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¥rom (11) and (12), by subtraction,

: A+B+C=0;
therefore C=—13%;
241 1 1 1
therefore s s ks Sl iy e i .
5 1 25— 14 ),
+ +
Blw—1) 24 (z+1) T3 —.,r,~+1}
(@ + 1) da 1 1 %1

therefore J @ +

—-1)"(:1:3+1}=—3(;.-r:—1)" —q;j%"’é(m—l)

ﬂlog(x— 1)+ Iog(x+l}—-—100'(m—m+'[)
\ S
25. We will give as %ddltlonal cx&njgl;esﬂhe integpration

T N

w
of P E1” féupposmcr it and f posfmve integers, fmd m— 1
)

W d@h@tﬂﬂ&\iﬂw org.in N

——— Jn-l

Regquired the mtegml Qf ¥ wken n 18 supposed even.

The real roots of B¥21 = (J are 1 and —1, and the i im agi-
nary roots are found fl?em the expression €087 9 +4/{—1}siny :9

where 8 = E ana\:\‘ takes in succession the values 2,4,...up
to n—2; see chme Trigonometry, Chapter XXIIL  Now by
Art. 19 g{'\xﬁb %) be the fraction to he decomposed the partial

()
1
1 ¢ (e} S
ﬁ‘&Qt}ml corregponding to the root ¢ is Fl)oa In the
'..\p]:csent case -
. ...\\‘ 9 . qb(a) am—l am _ al_m . .
\/ F @)~ ne™ na—n,smcea—l.
Hence correspondmg to the roct 1 we have the partial
fraction ———r AGoT) and corresponding o the root — 1 we have
the partial fractlon ( )1) And corresponding to the pair

of roots cos 78 4 \J (- 1) sin 8 we have the pair of partial
fractions : .
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{cos 18 + /(— 1) sinr8}™ {cos @ — {— 1) gin r@}™

nlz—cosrd— (= 1) sin 28} ' n (@ —eosrf+ /(—1) sinrf}’

that 18
08 mrd 4 4/ (— 1) sin mrd cos mrd — o/ {— 1) sin mré
n {z ~cosrd — n(— 1} sin v8 * n{z —cosrd + 4/(— 1) sin ?‘9}”\\.
{ N\
. 2cos mrf ( — cosrf) —~ 2sinmrfsinrd O
that is n (@ — 25 cosrd + 1) TN
I S = Ny
Thus ooy = (m T teErD \%
2  cos mrf (x —co3 B}, Q_é__lr_[ mrl sin rg
g (a:—cos@)’ﬁ-sm ] ’

where X indicates a sum to be fQWé&dd&r%u‘lﬁbl IR B the

even integral values from 2 to ,nmﬂ inclusive. Hence

m‘-I d‘b. _ 1 ( I)m J..-""'/.
IL . —10 ( 1)+ log {z+1) -

N

’ ) . —
+ 3—% = cos mrflog (a&%ﬁ.&rcc}s rg+1)— % Y sin mrf tan™ msifno:f;? .
O . :
26. ng“m? ed the integral qf w?wn 5 ts supposed

odd. \3‘

’J_‘}ha real root of #° — 1=0is 1, and the imaginary roots
x(e found from the expression cos#d + 4/(— 1) sin+#, where

\36‘-— = and r takes in succession the values 2, 4,....up to

n—1. Hence as before we shall find

@ dw 1 2 g+ 1
D S —log(:c-—l)+ Ecosmrﬁ'log(w — 2z cos 6 + 1)
<~ ye—cosrl
— ?—1.2 sin mr@ tan ™ =—e—ps

3—2

O\
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=1

a :
— when n 18 supposed

7.  Regquired the integral of i1

even.

The equation #"+ 1= 0 has now no real root; the imaginary, {
roots are found from the expression cosr8 & 4/(— 1)sin ?'G,\ )
£\

i . . ; >
where @ = =, and » takes In succession the values 1, 3enup

i) : « \/
ton—1. And ifa be a root of 2" + 1 =0, we have™\

¢(a) _ avn—l _ am _ am “‘,\’,\'.

Fa) na™ na” n }
thus the sum of the two fractions correspduding o a pair of.
Imaginary roots is L

Tn (w—cos vt sin’ o0

www.dbl*ﬂié%‘én'y_org_in

2 cos mrd (z — cos 78} £t mrd sin v

n
N

=1 R "'o )
J’w dz_ }% 2 conmrfd log (¢ — 2w cos v +1)

'+ 1
<\
%\iZ”}siu mrd tan™ T 0BT r6
_P\n sinrd
where 3 indi#iates a sum to be formed by giving to 7 all the
odd integ{al;values from 1 to » — 1 inclusive.

k[

O% . . & . _
: ‘2\\& Bequired the integral of 71 when n 18 supposed

ddl

]
N\

A~ 'The real root of #”+1=0 is in this case — 1, and the imagi-
N/ nary roots are found from the expression cos »0£v/(—1) sinré,

where & -——-g , and 7 takes in succession the values 1, 3,... up
to n —2, Hence we shall obtain

™ de (— 1™
[osr= S ey

1 ¥, cos mr@iog(a®—2& cosrf+1) -|-g = gin g tan ! aﬂ?
n 3 n 7
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29. We will finish the Chapter with some miscellaneous
remarks on the decompeosition of rational fractions. -

# (@) into

I.  Suppose we have to decompose the fraction Fla)

partial fractions where ¢ () is nof of a lower dimension than
F(x). Divide ¢ (w) by F'(z}; let ¢, () denote the quotient,

and ¢, (x) the remainder; then <O
b= @F@+a@; Y
, () _ %, () K7
therefore ;.,L(m) =g, (=) + IOk .m:\\

Accordingly we have now to decomposq%-g—) into partial

fractions. It should be obsgerved that’}vé ghall obtain the
same values for the partial fractiomsyWhether we apply the
. d bragyliky .ot gh it
niethods of Arts. 19, 20, 21, 22,40 23 to E}f, Eg agryt?%”—)) .
Take, for example, the case, of “Art. 19: since, by hypothesis,
F(a)=0, and ¢(«) = ¢, () F[w) + ¢, (2), we have ¢(2)=,(a).

II. From conside"fﬁg the values of 4, 4,, ... in Art. 20
we see that the wing result holds: let + stand for any
mteger from 1Mo '»n both inclusive, then 4 is equal to
the coefficienyiof“A"™* in the expansion of f{e+ &) in powers
of . Accordingly we may obtain A4, by ordinary algebraical
processeg,.\';\For example, suppose We have to decompose

m%%?@; into partial fractions. Denote the required

peii‘i;ial fractions by

"‘\3 ) Al + A2 + _‘_4_"_
‘ (w—a) (e—ay™ 777 z—a
Bl. ‘Bs ,.,J_BP_
ettt e

Here f (@) = (w — b)™®; therefore 4, is equal to the coefli-
cient of A" in the expansion of (@ —#+A)? in powers of A.
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The expansion can be cffected by the Binomial Theorem;
thus we obtain

42D (prr=y (-1
|7 —1 Te—gF

N
Snmlaliy it s stand for any integer from 1 to p, bot',lt\

melusive, then B is Lqual 50 the coefficient of A in the. éx-

pansion of (b—a T hY™ in powers of A W

l“.‘

ITI. Suppose that \\

(;,(x):(l—%?) (1. ) S‘, :—:)
ol -

22 E ) ...... . ?E.E'J'Ts

wwwh%]larlea t 5 &F 6 rﬁ are of the.s{z,me dimensions. By decom-
posing i,(( g wo obtain the, ﬁe}m 1 together with a sertes of
partial fractions, a pau Oﬁ\whu,h may be denoted by
\\ A_f + ﬁ'_. ,
Z A » & — P @+ P
< ) -
where g btm]&n.d"b for B
tr\ikn by Art. 19,
" ;"\:f; A qu(P) , B.= {#’(_ P) .
QY SF) =)

Let A be legs than %, and suppose n to inicrease indefinitely;
“then the term %-.;.—,, vanishes. And, by Plane Trigonometry,
Chapter XX111, we have '

Pz )2-7“‘?3, IFT(Q:)_=SM§.’"

ke
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thereforc ¢ (p) = Sij;f, and since sinkp =0, we have
: cos ke
F'p) ==,
P
"Phus A, 4 B, sin /p ( 11 )
#—p  xtp hooskp w+p A
FAY
: . .‘z“"ﬂ" ;’\\'
29 gin —— A
k A\
- i "\ 3
Rk cos rm ({1} -‘?) \:m:\g.
Hence finally, if & be less than 4, N\
.
sin Aw r sin SV

——a— = &
sin b CO8 77 vaéww‘—db%&ubral y.org.n

where = denotes a smnma,tlo.ﬁwmh respect to # from »=1
to =0, M

The methed of th1s\emmple may be mpphed in other
similar cases,

1V, Some a,dc\hwnal information on the theory of the
decomposmwn rational fractions will be found i the first
volumne of S&srtts Cours d dlgibre Supéricure, 1866. Sug-
gestions whiich are intonded to diminish the numerical labour
mvolv “)J the process of decomposition will be found in the
Cam %‘ge and Dublin Mathematical Jowrnal, Yol. 111, in the
zlfwtkematwmn Vol 111, and mn the Qieaiterl y Jowrnal qf Ma-

. éh‘eﬁmhos Vol v,
N

) 2

\/



40 EXAMPLES,

-

e

-
EXAMPLES,
1 @D L2 ..
fw’ 176 % rrar1 B0 U \
xF AT "\:X
2 fa:“ - da:—.;;-}-log( ) Ol
L7 : a*da at “~< 3 .
fw’+7w 1;1—2—5—7.5:"!"6‘3!‘ log (& +4) — 2\':7"\1:0&(:1,—1-3)
P A\
da 1, 1 atw \
e T ™ Lt e, o
si-sa 5. e 1.l
i = — T 2':':\-—
5, j i dx 3 tan 4@,10“5-: Ta'
rww . dbraulibrary.orgin - &Y
dix 1 24+l 1, 2w+l

(xz+1)(w*+m+1)=2}?g Z+1 TEE s

C &de 1 ~§¥1 V2 @
J—“w'+5572—€{%, SEREE RS
J‘mg—l Dl el
S R P Sy

a;\s.x+3 x—2
%«1)( dm m+]0g$ i

(32?—1)dm 1 5 4
1;0\ Jm a9, Elogw—l-glog(m—ﬂ)-ﬂglog(m+1),

f o a”) v D "y {1“ Ve T&) + ftan” ﬁ} ‘

] |
12 [ 1+x+az = =logaw—3log (1 +4) 3 log (1 4+ 2)

1.
—Etan @,
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13. f(m—l)fa(;a:‘—i— P-4 (93—1}"121"%("”“'”
+ itan“‘ x— é(_w‘lj-—lj + ;i log (& + 1).
RN
Yo v fd‘;w)” A+ g e LI “)g\\\
7 1,8
P 100log 1+ z;)+ log(l + 2z) +2§—~Q‘3>§m z.
t3 1{2 ttan‘1 (z V’Z %\ﬁﬁ:t&n" {x2-1)}.
16. /i f:fxl = Tl ;s log (- 2"+ 1»3‘3.‘#% Bbreplibyyry org.in
. ?u
Q’@ {‘mn“ (22— #/8) — tan™ (2 + v'3).
7. I-Af,_*‘“(-ld—g—;j’{ g\f\ﬁésume 1—gt =y
18. [(1 T V‘:a{i Serga) Awumey= T"f_m
\w :
&
Ay
/\f“;“
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CHAPTER IIL £\

.~ ¢
FORMUL A OF REDUCTION. . \ ‘~,.\

30. LET @+ bx* be denoted by X; by integrdtion by

parts we have R
: o g1} A ’:’
: fmm—lxpdm = E_ xr {f_?_ po--l (_i.‘i( dap
w I dﬂ”: o)\\.;
X% bp [ e o f T (1).

-

dbraulibrary.org.in | o\ . _
W tt‘léfg E{g&%{lmlg(l) is called anjformula of veduction; by

means of it we make the integgal of «™' X® depend on that
of 2™ X?™  In the samelvay the Iutter integral can be
made to depend on that gfz™" X", and thus, if p be an
integer we may proceed\hntil we arvive ab &P AP, that
i ™, which is inttediately integrable.

From (1), by(tiansposition, >

< nye

Cl{%gé m into m—n and p into p+1; thus

. :" - il . i .
e S o n [ o (2)
<\~a m{p+1) n{p+1)
This formula may be used when we wish to make the
integral of «™X? depend on another in which the exponent

of # is diminished and that of X increased. For example,

“if m=3, «=2, and p=-—$, we have
(w+ g,;{,%)-‘;} bafla+b2%) " b lo(a+ba%)’
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The latter integral has already been determined, and thus
the proposed lllt.C‘Tra.tuIOIl is accomplished.

Since l‘m""‘X” dz = I.-.c"‘_‘ X7 (a+ b2 dw

e

<

= j —1X37 1 {ir + b.] m+n 1 Y;J 1 .
\ < Q\’
we have by (1) ' P\
N/

X7 hap | i T
A ‘ IR =g I ; '""X‘” et + Z:j.;;;(m"?X”"‘dx,

i HE o

. " o\
therefore ﬂ D Gl I XP b(m + ). ”“‘““ X,
J am (z,m\J

Change p into p+1, and we have\~

o ge g = TR _blm

. i rL

ﬂr—w'w ﬂ:l.b"}“é{JhKl‘aazy org.ii).

Change w into m.—n aﬁtl 11 ANSPOSL, then

i w k] pﬂ. o -
[ X? do = £ (m—n)a

f)l\g’xk?x"th b {m + np) ’ AT di (4).

We have '111‘31;}1; obtaincd from {1) by transposition
2 X" m

‘w}m‘"l X ({:.I: ="

_ ey g
bnp  bnp ) WX dr

\

:Llso\\/ [ " X dw=a f a1 X de + b f a" P e

m—i—ﬂ_z,’} m—f—ﬂp

m ') f
¢ \ﬂlemforc f 2" X7y —a[ . Cally PR AT _m j o™ X7dw;
wp  wp
therefore [o1Xede =220 4 O [ poxemign | (5)

Change p into p + 1 and transpose; thus

A_. R - S ____"E,“_Xpﬂ _ 3’31"}—_’1’-‘.}) + ‘TlJ‘ L i ] dﬂ? 6
J‘L Xrds= t&-r‘a(p—{—'l)—l_aﬂ(p+1) AT A (6).
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31. If an example is proposed to which one of the pre-
ceding formule is applicable, we may either quote that
particular formula or may obtain the required result inde-

pendently, Thus, suppose we reguire ’. _Trg.:v__“ we have
Ivig —a} )
fdﬂf(c—wg) 2 e O

f'v’tc =) A

= - VE = ) I 1) | ”“’\/(c—x)dic "

= et 1y (G—w):f”’_zﬁl_w
Jid—a’) a7 + (m — 1) «/(c" A
By transposition,
o\J

z"dx - a™
e [ v [
ww wiBBFaf B rary org.in Y hd
g wtde &N =), wm—1) ¢t [ #"tde
fd(c T T m ‘?;ZFP_T: »’(c e gtig (1).

This result agrees W\2 the equation (4) of the preceding
Article if we make al=E, b=—1, 0 =2, p=—4%, and change
m into m + 1.

N\

Again, suﬁjﬁ&gé we Tequire f %—) . We have

fergl -5 L

O AELD) | gy [LEEE) g,
v _ i+
o+ F @+
=" T (mt 1)J m
By transposition,
2 K _ N+ dx
(m + 1) G fwmﬂ! '\/(a’s + ms) - mmﬂ ?n‘f m‘\{(a_ -+ w‘l)
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and by changing m into m — 2 we obtain

dz A (o + &) m— 2 ]‘ de

T @) (m—1) aa (m— 1)@ (O + )
............ ().,
Another example is furnished b f -& which m
. ™ }dx
be written | 7@a = ; if in equation {4} of the précedlng
Article we make b=— 1 n=1, p=-13, and change & and m
into 2¢ and m + % reapectlvely, we have N\
f _____ ande 2" (a0 — &) L (2m— 1’)f a™ g
V(2ax — 2% T N (2ax — o)
\‘ ............ 3),

which of course vuay be found mde'Pendently
o awarw dbra uhbl ary.org.in

32. In equation (6) of AXE'S0 put a=¢, m=1, n=2,
b=1, and p=—»; thus »;V.'”

dw Al L 23 dw
CET I (T—I;Zc‘(m“-i-c“)"‘ -1 f @+
This tormuls\\(rﬂ serve to reduce the form
O J (Adx+ B) de
“J (& — 20+ o+ 5’
which @edurs in Art. 18; for this last expression may be

wni\eﬁ ‘thus
R Afw—ayde L A
JON [y SR e

“\“that is

A 1
~sp et e D e
By putting z — ¢ =/, we have

f {=- f)f +AY =f {w’”ixﬁﬂ}' ’

and thus the above formula becomes applieable.
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33, These formule of reduction are most useful when the
integral has to be taken between certain limits. Suppose
¢z}, x{#), Y (=), functions of z, such that

j:;b(:z:) do = () + [ (@) da, o
. b ' ' ,';t\’
ther [ (@) do=x (B) - x (@) + | ¥lw) dz, N
as s obvious from Art. 3. ~:‘
For example, it may be shewn that NS

” K’ 7 P -o\.;
S STl Gt net i i
f(c a*yide = n 1 +n+~1,\6 24 de

i ﬁejalglr& %‘mt""w quantity, th@ﬁ ® (G ~a )“ vanishes both
Tl

whon 2 =0 and when @« = o Hence

«nc Cox mET g
j(r - d\\ +1J°("' A da

The to]lowmU \Q\a similar example. By iutegration by
parts )

fmf (15 «,s)*'*fdw—

(1 ~wy P r-1 [ &8 (1 — 2y da.
" T

&

Hejl@\ J 2 (1~ )™ dip = 1;—1 [ 2™ (1 — ) da.

'”\: ~ Thus if 7 be an integer we may reduce the integral to

! (1 xy de, that is to 1 ot hence

i 1 r=1 ____’(?"_— )(?‘—2) ...... 3.2.1
.J,,m,— (L—a)"™ du ﬂ(n+1)(n+2) ...... (m+r—1)"

84, The integration of trigonometrical functions 1s faci-
litated by formule of reduction. Let ¢ (sin 2, cos2) denote
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any functiou of sin & and cos 2 ; then if we put sinx =z, we
have

J‘qb {sin &, cos &) dw ='¢ {2, J(1— 22)5 ax ()u

- f(p 2 (1 —z*)}r(% ...... 1)

. . N
For oxample, let ¢ (sin =, cosz) =sin"w cos’ 2; then

f&m” & cost wdm = fz” (1 —Ayparde..., :.’.: (2
\"

N

\.‘ \
If in the six formulss of Art. 30 wo pu{'; a——l h=—

n=2, p=4%(g— 1), we have Y
[ (1 — iy . \
J ’ wwwdbraullbl ary.org.in

z”" (1 __zg)ﬁt-?-ll Q ]’ m‘?] 1
=T AL 'j (1 — #in-ady

m m \

-

21— E)E(QHP Y — 2

T g1 T g T

- ?m_(ﬂ\){%}) i + 9 +1 ! Pl (1 “) N

_ ’z‘“‘,‘z(l P Lt m—2 ... b
t'\” R 'm+¢]—'1j3 (1 — Aoy

23 (‘[ _ z”)i'“”dz

\:“:'— i (1ﬁﬁ)§.{f_—? g—1 { s BN Y. -—
'.Q mtg—1 m—l-gw-l‘z (L= 270 de
i..\‘:;v (- ze)mﬂ, m+g+l .
Ne” = — [ ] . kig+1
) q +i + —-&.T fz (1 zg) fetl) of o,

It wo put m=p+1, and 2 =sin #, the first of the above
cjuations becornes

. ] Bl g -1
Anf @ cos? wde = Sgl.__ Zeos w4 P2
f Pl +P+1 sin®? @ cos wda,

- and similarly the other five equations may be expressed.



43 FORMULE OF REDUCTION.

35. The following is a very important case:
f sin® wdie = — doosz sin™ wde
dx

=—cos&sin" e+ (n —l)fcosgm sin™ wda

=—cosgsin™ &+ (n— I)J (1 — sin® ) sin™™ i,
£ ’\.

Transposing, we have \

s, 3
."

anin“ wde=—cos 2 sin" " &+ (n—1) [Slf{\ Zedx
therefore f sin™ xdr = — wgn—m—- o+ E;L—«l-\}[%m“ Zade.

Trom the last equation we deduce\l? n be positive and
greater than unity,
vww.dbraulibrary og@fin

sin” xdm——~—~ f sm""" ade.
o

Similarly, if » be pomtl‘ve and greater than 3,
n—38 [,

Proceedmg thus, if n be an gven positive integer wo shall

arrive at J- @2 or ym; if » be an odd positive integer we
o e,/
Z LN P . .
shallﬁﬂ'i,ve at [ sin adz, which is unity. Hence, if » be 2
N’ vy
stft%re integer,

\\ f}”sin“ wda = (p=1) (=8 (n=5)....1

< Dt —B....2 2 eV
o __(n—l)(n -3 (n—5) ... 2
fo sin® wdw S (nodd)

These two results hold if we ebange sinx into cosx, as
will be found on investigation,

36. From the preceding results we may deduce an im-
pertant theorem, called Wallis’s Formula.
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Suppoese n an even positive integer; then

0

[t . . #n—) n—3 n—->7 31 = .
SN melr = — . —— Z .5 e L)
,’0 7 =2 n—4 422 ("
AN n—2 n—4 n-6 2
f SIN T adr = T L S G e (2) LN
0 n—1 n—3 n—>5> b
7\, ¢
o . i . ¢\
Now it is obvicus that l s adi is less sthen
] .\,,i

o in
| sin"*adr and greater than[ sin® wdz; begafise) each

In [} 287)
elonent of the first integral is less than the ederésponding

cloment of the second integral and greatersthian the corre
sponding element of the third integral. \Astd it has been
shewn that 4D
for .
o O
f sin” adz %@brau]ibrary.ot‘g-iﬂ

4af
g =

iw RN
{ sin" ada™
0 R\

a)
3
i 3

sin® mdy A~ ' 1
Therefora —;-;——-—-—'—h—;\\l% less than 1 and greater than n—;— :

e
fo su:} \th%
_ Hence the tato of the right-hand member of (1) to the
right-hand Juepiber of (2) is less than uuity and greater than

”n—1 S\ %
"'F!f.’%&
B0 grenter thay 2:2:%-4.6.6.....(n =2 (n -2

¢ G A o 3 5 E =8 (=1}
M\:;‘];d less than .?_“ 2. 4|,_4‘ 6 '_6:':':'{??'.__7_2) (n;2) .—ﬂ
\ ' 1.3.3.5.5.7...n—3m-1n—1""

EXAMPLES.
5

) 2 A 2 ] ’
I f LT L Gl 2. WL PR )
(@" + o) dee ATl J—n—!-l_!-(“ +2%)* da.

T L, ' 4
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. i ﬁam ~
2, fm"‘ N {(2ax — 2°) de =— ——E?;—:*_——Q——)
+ (Liiﬂl; L) f e V{2ax — &7} dee.
| Q-

3 [m V2aw — 2% do = - } (2am — a")} +aj»./ 2@@"—;?:35@‘{*33.“

a 3 '\
4, F wv(2aw—m’)dm=%&—. '\\,‘

0 \§
5. f 2 (Qaw — oy dw = — - (2%« af)%+%g\j(x~/(2a$ — &) do.

_ O

6. f (20w — af) da = O%T O

0 IRAY

rww . dbraulibrary.org.in ol

7. fi & J(Zax — &) da ::E'gf .

o

m log )™ =1
8. [or(loga) c}fe, ,,.ffl ) MJ "(log &)™ de
O z" 2

» AowaPle = 2 e
b for dogaie +1{(1o_g£) ]oga:+( T }

£<ssec 0 df) = -3- .

* & o) da= (: ‘g) .

I“\§“l * 0 J(a +m) 4

\/:

12, fsin’ fcos’ 6 df=—1 cos* 6 + § cos® 0.

f.—.,fm—T =3 (tan 8 — cot 6) + & (tan® & — cot® §).

sin® @ cog* 8
sin8d40 siné —sin @
14. f cos® O Qcog”€+i *’l-i—smb‘
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im . g
15, f (cos 26)* cos §d8 = 37—'—1:’;—(-2) .
-3

Assume /(2) sin # = sin .

p w2
186. FJ((L*— %) cos™ fdx: (1 + —7-'——) <.
Jo 4/ 4

o N
17. j ers™ dx={m"—-4 24
K" ) { ) ;”g\\“
¥ ainzdz &g—1 Z2—¢ \
18, ‘0 ]+GCO§:|.’L‘__.(7;_“ 10‘3‘(1‘5‘0)"“ _2 . ‘\\ )

19 If cﬂ:(ﬂ)—-[’l—{—ccoqx) da, shewth&t\

-1 —-¢)pri=—csing(l+e coqml‘“\’f
+(2n = 8) & (g pdidbrbeitbBid bra-if).

i3 ‘3 9'

20. f A (2ax — 2*) vers™ d.,:: -.-\:frf .
2 *‘\& 2 3

ZL [ o (20w — &) vers™ wd\m—iﬂ—pa‘%.
0 @ o 4

w\\
22 [% Td 1 2
=, {tan ?:) K — 4 log 2.

dar  w i (L3N L 135 )
N{Q-‘c%ma} 2[1 [“)6+\74)C+(246) aa j‘
¢ being less than unity,
\‘,/

24}. ‘\Let P =4z" + Bm 3 Gx" + . o V J‘WWIJ“(ZJC,

23 ]"*"

<\:’\' a=m+ltns B=m+14+nb y=m4+1+ac...
/Thuu C
Vern= AV aamF BY it ad F OV g + .
BN =g AV A BB s F OVt

(Cambridge and Dublin Mathematical Jowrnal, Vol. I
page 242.)
4—2

A
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CHAPTER IV. O

MISCELLANEQUS REMARKS. M'\\J

37. WE have at the beginning of h’i@\\ﬁook defined the
integral of ¢ () between assigned limits ‘e and b as the limit
of a certain sum ¢ (x) Az, and hdve“denoted thiz limit by

wwwidbraulibrary.org.in \ S
f & () de. ~ We have shewn thabthis limit is known as soon
as we know the function (%) “of which ¢ () is the differen-
tial coefficient. In the pages immediately following we gave
methods for finding %-{@} in different cases. We shall now
add some miseellanéons remarks and ftheorems, mainly in
order to recall the attention of the student to the process of
summation whigh we placed at the foundation of the subject.

38. Suﬁgd;e we wish to find the integral of sin 2 between
limits q“@}l & tmmediately from the definition. By Art. 4 we
have })\({ﬁnd the limit when = is infinife of

hJsinba +stn (@ + &) + sin (@ + 2B ...... +sin {o + (n— 1) k],
:..\:' >3
\w\‘:ﬁ;here h =}3 (b — a).

1t is known from Trigonometry that this series

hsin(a+—5—._—q—ﬁ) S:i]l-b—_—-'gf _

. n—1 . nh
km(‘”—z‘h)m“ 5" "3 3

2
. T - .
BII = RIIL =

2 2
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The limit of i-h-when a is infinite and therefore h zero
sin g
is 2; hence the required integral

N
bta . b—

=250~ %ein 2% = cos @ — cos B A o

2 2 N

\\ n.

30, Reqmred the limit when # is made infinife, of"the

sories SO
_n A
+1+?12+°)2+?%+32+’R2 """ +(1-*r—1') 4
This series may be written O

\y/ 1
- N e | ¢
ndl 1+ (1) 1 +( I + (,u _d'brauhfn_ﬁr(gwn-glj—i
k) #

putting & for ~1- we obtam

& ’

S e
LT T @ T 17

bompanncr t}a1§ With Art, 4 we see that the required limit Is

11, 1 1
—{'4- : +

what we’ﬂcﬁote by | i—f%-g Now J imz-v—g—tan z; hence
¥ s&% roquired limit.
"\ ) 3

\\, ~ 40, We define f ¢ (x) de as the limit when » is infi-
nite of

e (@) + by (2) ..o + A (20,)-

Now let d and B be the greatest and least values which
$ (2} takes between the limits a and 4; then the series is

leas than
A+ 4. +h,) 4,
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and is greater than
h, +h,+ .o +h) B,
that is, the series lies between
" (b—e) A and (b—a) D. A

The limit must therefore be equal to (b — a) €, wherg ¢his’
some quantity lying between 4 and B; but’ since, ¢| (@ is
supposed continuous, it must, while = ra,r_w'es fripah, b to 5,
pass through every value between 4 and B, “andoridst theres
fore be Lqual to ¢ when # has some value hd€wcen @ and b.

Thus €= ¢ ja + & (b — a)}, where @ js someproper fraction,
and :.\\,

fb d(@yde=0b—a)d {a #’mgma-) j.

gla,) retaing the’~same sign while & lios Le-

.ww‘ixng?u&%g Vs Tnay prove, thm
[ @y @ zPlarot—a)| v
& . ...\"\ o
41. The tru {f‘fhe equation

Jm‘{’g“)d’ﬂ '_I-c¢(w)dr7»'+r¢(w)d:c. ........... (1

will wppea,’?\nnmedlat@]y for suppose ¥ () to be the infegral
of ¢ (sq{l;hen we have on the left-hand side

. '\ ¥ (0) =4 (a),
~ mgd on the right-hand side
N Y () = (@) + A (B) — A ().
In like manner the equation
] $ (o) do=— [ .: b (@) Ao, )

is obviously true. We may shew also that

f n b (@) do = J[ o A CEST Y R 3).
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For putting ¢ —x =2 we have
fti’ (@ — ) do= _-f¢ (e} dz,
therelore f & (@ — o) do=— J b (2 . O
=[ @y @

) a et . o . t’n‘
Of ‘course f b (2) dz= J ¢ (&) du, sinee 1t i3 1ndrﬂ‘§*eizt whe-
\
ther we use the symbol @ or z In obtalmng\w result which
docs not involve x or 2 N

We have from (1) . \s

J (x) dic = _[ gb(m)%ﬁb%&‘f)b‘%ﬁry org.in

The second integral on, sﬁhe I’léht hand side, by changing
z into 2@ — &, will be fouﬁd. equal to

f o (2@"\53’) da’ or r ¢ (2¢ — &) da.
. o \’\\J ) Yo .

Hence
h e[ 160 +9@ums) e

Hgnéz\ if ¢ (@) =¢ (2a —x) for all values of = comnprised -
bet\%\&gﬁ {} and @, we have

\“ f & () dw =2 fo 6 (@) AT v, ),
\ and if ¢ (20— ) = — ¢ (a), we have _
f:' GD) AT 0 erorrreereereeeneraees 5).

For example

jsm 646 - 2f Sin* 0 dd....... by ()
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snd [ o 0d6=0 ...... by (5).

42, Such equations as those just given should receive
careful attention from the student, and he should not leave
them until he recognises their obvious and self-evident truth.

f " cos® 0 d is by definition the limit when # is infinite of t\he:\
series \ G\
h{cos’ b+ cos’ 2k +cos’ Bh...... +cos’ (n—1) ?z}‘,
where nkh =m. Now ' \‘

cos’ h=—cos’ (n—1) &, cos’ 2k =—cos’ (nnZ} By ven ;

thus the positive terms of the series just b&hmce the negative
terms and leave zero as the result.

N\

In the same way the truth of .{ win® 6039 2 I. sin® § d6

rwiw dbraulibrary.org.in
follows smmediately from the deﬁmﬁon of mbegmtmn and the
fact that the sine of an angle 13 ‘equal to the sine of the sup-
plemental angle, "

Suppose b greater than o, and ¢ () always positive be-
tween the limits o a,t{ﬂ b of 5 then every term in the serics

3¢ (x) Ax is positive, and hence the limit [ & (@) dz must
be o positive fabentity. )

43, Al} the statemoents which have been made suppose
that theMunction which is to be integrated is always finite
between the limits of integration; for it must be remem-
bered' that this condition is included in the word continuous

#ofAhe fundamental propesition, Art. 2. If therefore the func-
tion to be integrated becomss infinite between the limits of
integration, the rules of integration cannot be applied; ab
least the case must be specially exanined.

Consider U%x} ; the value of this integral 1

0 :
2~24/(1—a). Here the function to he integrated becomes
infinite when #=1; but the expression 2—-24{1—a) is
finite when e=1. Hence in thiz case we may write
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1
f _dw 2, provided that we regard this as an abbrevia-
[ 'V,(l -

)

tion of the following statement: “ [ q?(]iﬁx—) is always finite

« - o
if ¢ be any quantity less than unity, and by taking @ suffi-
ciently near to unity, we can make the value of the integral

differ as little as we please from 2 PR
& Q‘;’J’} R ) - ""}( '
Next take [ ——; the value of this integral is ~Jeg{1—a),
. X K 0_1 - i ¢°¢ ?
which inercases indefinitely as & approaches to ,mﬁty. Hence

. . . ' A
In this case we may write i
v . —_

= \Erovided that we
regard this as an abbreviation of t-he'\f@howing statement

l1—= :
by taking @ sufficiently near to whity skreanbrakectheiinte-
gral greater than any assignedwguantity.”

o f inereages indefinitely as g*approaches to unity, and
0 "

N ¢

Next consider f &3, the integral here 1g . I
im) 1-=

without remarking(that the function to be integrated be-

comes infinite whén's =1, we propose to find the valuc of the

integral betweegmthe limits 0 and 2, we obtain —1— 1, that is

- 2. But i85 obvionsly false, for in this case every term

of the ser,'\ési indieated by = ¢ (@) Aw is positive, and therefore

* . b d ® dx

g1t ¢ negative. In fact [ — f——

the th cannot be ga;fz "0(1_ ) and —ap

are’ Doth infinite, This example shews that the ordinary

ules for integrating between assigned limits cannot be used

~\when the fanction to be integrated becomes infinite between
/ those limits.

44, In the fundamental investigation in Avt. 2, of the
b
value of f ¢ (x) dx, the limits « and b are supposed to be

finite as well as the function ¢ (x). But we shall often find it
convenient to suppose one or both of the Limits infinite, as we

will now indicate by examples.
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Consider J. T the 1ntegral is tan™w. Hence f oo

=tan" a; the larger o becomes, the nearer tan™ ¢ dppwaches

to =, and by taking ¢ sufficiently large, we can make tan™ ¢

2 Qo
differ as little as we please from %T; hence we may Write)
as an abbreviation of this statement . O )

['w de m ..."'\}‘.
Jo L+t 27 ' \\

¢ dr
Similarly J‘ et log(14-a); and 0& takm“ o large

enough we can make log (1 +«) grcate( thfm any assigned
quantity. Henee for abbreviation B, n;m,y write

www.dbraulibrary.org.in f ,_g’:w

45. Suppose the funcﬁi'dn ¢ () to become infinite once
between the limits @ a;gq\b, namely, when z=¢. We cannot

\ b

theu apply the o:l;(k@ry rules of integration to [ o () de; but
FL /)

we may apply those rules to

:*\T'“ dot [ $@)d
Y e[ g

for any&sgigned value of p however small. The limit of the
la.st e§presswn when g is diminished mdeﬁmtely 1s called by

W\Cauchy the principal value of the mtegra] ’ ¢ (x) da.

For example, let ¢ ()= —

e-p of —_
then f S log e,
: 2

& c—
b dx v [0 da b—e
and = —— = ~log—-—
et €& ctp & — &
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c .
hence the principal va <, that 18
log - Cj

S h—

46. The value of j s 18 sin” : hence .

@~ 2) )y
' s adx ol sin” (1) —sin™ (—1). O
S A - A

< 3

Students are sometimes doubtful respecting the wTue which
is 40 be assigned to sin™ (1) and to sin™ (—1) imsuch a result
as the above, Buppose we assume a=asinf) ttis the integral

becormes ( df or 8. Now « increases, fr‘&n —a to a, hence

the Timits aﬂblgned to & must be suqh as correspond to this
vange of values of wn When TS it ﬁﬁ%ﬂﬁ?&’ﬁ@f}b‘{-ﬁr{m ¥

value contained in the iom@l& (4n—1 ) g

integer. Suppose we takes the value (4n — 1) ;—r, where n is

where n is any

some definite integgx:,’\”t‘hen corresponding to the value z=a
we miust take 5%@’&—1):}—‘--{—7:-- this will be obvious on

cxamination,. ber“auae & is to change from — @ to + @, so that
it continughgdnereases and only once posses through the value
zero, I

o S
(e f? I

~"\ Ae, this point, is frequently found to be difficult by hegin-

\ ) “fiers we will consider another example,

Suppose we require [ " _g%ﬁ .
Jo a4 tan'f

I

aad o5 the integral is to be taken between the limits 0 and

N
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. o /b .
we 1must defermine the values of tan™ (%ﬂ \ in these cases,
/

Suppose 0, 8,, ¢, 8,,...8,, m, to be a series of quantities in
order of magmtutie By the nature of integration

[ude = ["udt s [ udo + f wdh .+ Tuds, o

n

'\
Now each of the integrals on the right-hand side\at be
made as small as we please by inereasing » and mcfkiﬁg: two
consecutive quantities as 8, and 0, to differ aihttle as wi

please, Hence we see that the symbol tan™ [——) must be

¥l

so taken that tan™ (%} — tan™ (Em\g } shall diminish
a J ANEG
indefinitely when 8, — 6, does so. ANV

www MppRylibrar gner Lﬂﬂ) mus‘f[i:n"crease continuously with a,
and it can only pass once through an odd multiple of 5 While

8 passes from 0 to m\ If then we take mw for the \ealue of

tan™ (ta_aﬂj whe}t\\ﬂ =0, we must take {(m + 1} for the value

when 8 = ;.and thus the value of the integral between the
tened la 1:11:\3 ig o
assigno ]y{ i
&memon mistake with beginners is to take the sccond
valu.e the same ag the first, instead of taking the second value
Adexceed the first by m; thus the value of the proposed irrte-

\ \gtal is made to be zero, which contradicts thoe last paragraph
of Art. 42,

. n
Apgain, suppose we require J

(@—ccosﬂ}dﬁ
&+ & —%accos B’

J‘ {a—ccosf)dd 1 [JLL+_H_"'£“_°1_}J9.

&t f—2accosf 2a a4+ & — Bgccos B

@ - ¢ de
Thus the requned integral is —2—— + g fo pr ey
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40
Now fa“ +¢'—2accos

_ sec” & & do 2 o (et l)
_I.(f"—f‘_) *tlotoytan’§ 6 a“-g“tan (a—_ctanzﬁ .

When taken between the assigned limits this gives dg%:%'
r~¢ 2

P 2 . i
if o is greater than ¢, and — &-2———2; if @ is less thapg,
T ’\:
Hence the value of the proposed integral i S % @ is greater
than ¢, and zerp i_f @ 18 less than e \\,
47. The Integral Caleulus furmshes simple demonstra-

bions of some im portant theorems rq}%pg%&hgwyﬁ.@qgcg
and divergence of scries,

's

If ¢ (2} continually dzmzrmsh as x tnoreases without limet
Jrom the value a, then tfw nfinite series

¢@)%$Ya+1)+¢(a+9)+ ......
AN

und the mtegmz f q': («) dw are both finite or both infintte.

's\l

I‘or\ﬁmce & () contmually diminishes f ¢ (x) de is loss

t'ha)‘\ a+1

”\7 ¢ (m) do is less than ¢ (&) and is greater than ¢ (a—l—l)

¢ {a) da, and is greater than f ¢ {o+1)dz; that is

g

Similarly f ¢ (2)dx is less than ¢ {4+ 1} and is greater
than ¢ (¢ —ff+21) Proceeding in this way we can shew that

the iﬁtegral f ¢ (@) dz is less than

L]

¢(a)+¢(a+1)5}qb(a+2)+ ......

N
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but iz greater than
plet+da+2)+dla+3)+......

Hence the scries and the integral are both finite or both
infinite. \

48. Now let log @ be denoted by A (&), let log (log‘féj"bé‘
denoted by A’ (z), and 50 on. Then we shall demonstratd the
following theorem: N

The series of which the general ferm is theQé@z}woml of
wh (n) AE(n) ... A () (A {n)}

18 convergent if p be greater than umtff{ i divergent if p be
less than unity,

) ¢ 3

1. X N\ 4
W W, dbLIgutlJlbra‘lby( o%’g imh (&) A0 (m\ ----- 7\-" (z) 4 o (w)}
then {¢ (x) dz = M}w 1f be not unity, and = N
B =Sy —p™ b s 7)
if » b 1t &
i p be unity, \

I 1-p
Henece ’ q.’J (bl\da’ = {% , if p be greater than
unity, and is mfmlte if p be equal to unity or less than unity.

Hence\thb theorem follows by Art. 47,
\5
‘é&\ “We now proceed fo investigute rules for determining
whéther a proposed infinite series is convergent or divergent.

\\  Let thare be an infinite scries
P S S S ;
Yr(m) Arn+l) d@+2) P@r+d) T ’

denote the general term by qrtr)' It is obvious that the

 series is certainly divergent unless r (::c) increases indefinitely
with : we will suppose that + () increases indefinitely
with a.
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1. Suppose, as @ increases indefinitely from a certaln

1
value @, that \[’@
arc constants, p being greater than unity; then the proposed
series is less than a certain series which is known to be con-
vergent by Art. 47: therefore the proposed series is con-
vergent. -

is always less than ;Oz: , where ¢ and p

1 ., c v .\ . ﬁ:\
If 7@ 13 less than 2o then x? 18 less than Chr (&) and;
taking logarithms, we find that p is less than ]3 lcf;git(x) .

- . ® AN
The last expression asgurmnes the form - whaf i 18 infinite;
by the ordinary rules for evaluating sueh{aﬂ expression we

obtain M as its equivalent. Thesefore if the limit of
av' () ¥ @) wirwdbraulibrary.org.in
W, when z is infinite, is greater than unity, we can find a

quantity p, greater than unitjf,%.éuch that #® s always less
than (¥r (5). Hence the preposcd series is convergent.

In-a similar manner t\may be shewn that if the limit of
oy ()
¥ {z) b\
quantity p, les\than unity, such that »* is always greater
than O (). .yHence the proposed series Is greater than a
certain divergent sories, and is therefore itself divergent.

’\n

11 :"'fhus if the limit of oy (m), when # is infinite, is
\C 2

ci’qhér\gre&ter than unity or less than unity, the nature of the

seres 1s determined: but if this limit is unity, further investi-
~\gation is required,

" Suppose, as  increases indefinitely from a certain value a,

that —L is always less than _C_ where & and p are

¥ () x{ (@)%
constants, p being greater than umity; then the proposed
serics is less thanm a certain series which is known to be
convergent by Art. 48; therefore the proposed series is con-
yergent,

when & ig inﬁz\lite, is less than unity, we can find a
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It L) is loss than then (A (@)]7 s less

o
J @)
than —I-PS;:LW) , and, taking logarithms, we find that p 19 less

T &
tog @) T
@ log Cr () = X (&) -
. A ) A () 2N K*
The limit of this expression when w is infinite is thesiune
as the limit of A (a) {xi(:(t:):) — 1}. Hence if the litnit of
&/
this last expression is greater than unity the.ﬁg}posed scrics
is convergent. )

than

, that is, 3 iz less than

a\J
In a similar manner it may be slyé;nfr; that if the linit
of the last expression is less thanyltuity the proposed series
is divergent. D
www. dbraulibrary.org.in o

v’,

TIL If the limit of x{zc)'{?"‘f (S) ~ 1}, when z is in-
finite, is also unity, fiwcther investigation is required: the
general term of the{ proposed serics may then be compared

@) R
\ ¢/
Procqo(iiﬁg in this way we obtain the following result:
et P\\:W%Z%) let P, =2 (2) (P, ~ 1), let P,=\*{2) (P, — 1),

aud generally let P, =A™ (z) (P, — 1); and suppose that P,
\ Agthe first of the terms P,, P, P, ... which has its limit, when

with

“\'' is infinite, different from unity: then the proposed series
N is convergent or divergent according as the limit of P, is
greater than unity or less than unity.

‘We have supposed the general term of the series to be

denoted by ;P%; if it be denoted by y (z) we have to

put instead of V¥ (#) in the preceding vesult: hence

x (@)
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2y’ (%)
x ()

we find that P,= ~ , andl that this is the only modifi-

cation required.

50. Another form may be given to the result. We know
by the Differential Calculus that ¥ (e + 1) =y () =" (2 + 0), ..
where 8 1s some propoer fraction.  Hence \

N

AEHD_, by _xld &

v {r+1) { xfle+1))’ ,““\'
therefore the limit, when @ iz infinite, of i{({—(@{—?:ls‘ eqnal
fo  the limit of sr;{ — x—(xx(—f—_)l_)} Tl@s;.i\?e may put
Po=g { )ﬁx(? 0~ 1} in the result ot\{&;\t 49,

wwi»\a,d'xbraulibrary-ol'g-m

The theorems in Arts, 47, é&jan’ii 49 have been derived
tfrom De Morgan's Differential &nd Integral Caloulus; there
18 a valuable memoiwr on the subject of convergence by
Bertrand in the seventh wglume of the first series of Liou-
ville’s Journal de Mathdmatiques. An elementary demon-
stration of the theoremh of Art. 48 will also be found in the
Algebra, Chapter q\\;’

..'{ ,,: Rk .
51. Reghired j log sin wdas
¢\' . o

N
B&&qua.twn (3} of Art, 41,
‘.:jr . i iw
:.\?F log sin zde = | log sin (g - :z:) da =f log cos »die,
”\ W - 0 o 0
3

Heuce, putting y for the required integral,
b
Py = l- {log ain = + log cos ) dx
S

in
= { log (sin « cos x) dx

L 5
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1L i
= { log ‘;_{1::2:5 dx
Je 2
ELs
=1 {log sin 2 — log 2} da A
A o

I

.
O ;\”}

But putting 22 =2, we have "‘S

\"\&

i 7
I logsin 2xde=4 | logsina'da’
f R

L

-—f log sin ada=, by Cin\bll (4} of Art. 41;

therefore 2y=y— Tlagz’,
www.dhraulibrary.crg.in
. -fr s N \ 1

therefore s §h<v 5

Again, ’ & log, bl&%g { (m— 6 log sin @48, by equa-
tion (3} of Art, 4:,1\ \ercfore

2Oy [ (* — 278) Iog sin 646,
\5'

therefe\l\‘e’T P log sin fdf = J‘ logsin 8d8 = log 3

OR ( logd+2) de. Put o= tan y,and the infegral

<>./ Required e

becomes f ‘ log (1 + tan v} dy; but by equation (3) of Art. 41
L]

fé'lr')g (14 tan y) dy =f4’ log {1 + tan (g - y)} dy,

l—tany 2
T tanz,r 1+tanJ

by
and 1+ tan (E—~y}=1+

i . 1 2
/ log sin 2z dz - 37 log 2. "\’
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therefore 2 [ * log (1 + tan ) dy = glog 2;
therefore ’ ! A/ P log 2.

144 8 ¢
See Oambmdge Mathematical Journal, Vol, 11X page 168

52, The rematnder after n 41 terms of the expa:nslon
of ¢ {a+h) in powers of A, may be exprassed by a, deﬁ'mte
integral.  For let \

Fiz)=¢@—2)+e¢ f\x—zJ+|—2¢'(w-— +}¢(w-z)
Differentiate with respect to 2, then N\
P =~ griass).

WR W Ydbraulibrary .org.in

[ntegrate bolth membors Of’ t,bls equation between the
limits 0 and h; thos

F(h)—F(0) == %f 2 (w0 - 2) de

1t is ~\\ B
b (w—h) + b (x\\h>+L¢"(w—h) ------ o=l =)
Q7 ap )
x\ =_|?1, . "¢* (@ — 2) da.
'tikt’& +h for x a,nduu ranspose, then
A4 ) o
W plarh)=¢(0) +h'(a) + Lf’ (@t 47(@)

+ l% [0 ¢ a4 b — 2) da.

Thus the excess of ¢(a + &) over the sum of the firstn + 1
terms of its expansion by Taylor's Theorem is expressed by
the definite integral

3
Efﬂ P a+h—z)de
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By mcans of the firgt result in Art. 40, we may put for
this definite integral

g it .
—— " 4k — Oh),
|7 N
ther i fractio A o
where € is a proper fr 1. ',\\
By means of the second result in Art. 40, we may pu\t,xor
this definite integral AN’
\\ )

)
_:r.a ™" (a + h— 6k f 2z, \
b " \\
¢ (a + 0.h), ¢

or

|?’l+1

. N\
where 6, is also a proper fraction, ANV
‘ N/

ww . dinauliBEary o8 INe es, By‘ I‘Bt{,gratlon by parts we have

f¢(x)dx—ww7 fm )da,
o ¢<«;@_\f @~ [ G 8" @)
fu ) da =5 8 @) ~ [ 28" @)a,

{..\*g, ..........................................
Thm f(;,( =) ___2<;,( )+|3¢” ......
Q” +E g O fargrty e
Therefore,
[i4ae=ap()— {55 $ @+ 5 8 @

NG "‘"!?:‘?f’““@ e a@an
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This geries on the right hand is called Bernoulli’s series. In
@

some cases this process might be of use in obtaining [ & () d=;
Jo

for example, if ¢ (@} be any rational algebraical function of
the (n—1)" degrec, ¢" {(w) s zerc; or if might happen that .

ja:":p“ {z) d could be found morce easily than J ¢ (z) do.  Qr,

oA\

agaln, we may require only an approzimafe valué of

[ ¢ (x) d and the integral ’ x"¢" () dx mightbe ‘small
a S N, 4

caough to be neglected. 84

54. By adopting different methods of abfegrating a func-
tion, we may apparently sometimes arriyeat different results,
Buot we know (Differential Caleulus, A2t9102) that two fane-
lions which have the same differeptigl coeficient can differ
only by a constant, so that any,twd dsedidibihsich org. ibtain
must either be identical or differ by a constant. Take for

\

example AN
[(em # W a0 + 5) do;

integrate by pa-rt-s,\}’j&}}us we obtain
(I(Mr:_kb:'g( v Fa {a" LI I
i (' +B) — | 5 (om + B) da,
7 2a J 2a

L >

N N 1 .'I z I r 4 . 3
that ol (@2 OP(@et ) o (ae kB
\/ 2¢ Bt

A

N\ . . )
W\ Mt we integrate by parts in another way, we can obtaus

(Wb {ao+b) _alawtl)
S 6a®
Therefore
(az + B {30 (a'e + 1) —a’ (az + b))
6u
and (@z+ ¥ )2_{3“'_(“&&':_‘1@ 141

Ga'
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can differ only by a constant. Hence multiplying by §a’e®
we have

a® (aw+ 0 {Bala's + V) — & {ar + B)}
- {de U 8o {ax + by —ada + 1)} =0,

where (' i3 some constant. This might of course he verified

by common reduction, We may easily detm mine the valyey’

of O; for since it is independent of & we may suppose”
W

ax 4 b=0, that is, »=— 2 ; then the left-hand gﬁ.’@n;ber
becomes (ab’ —a'B)®, which is consequently the V'Q&@uf ¢

<

Sitnilarly from

i - a\,/
s ' | \
f{‘l--'?«' + b} d + ;(a:;:'.;- B)da={ia -i\fwzb + b+ de
we infer \ :w"
www . dbraulibrary. org in )
(az+8)" | N wa+ ) {.(“"i' o) ot b Uf 4+ constant.
Za 20’

’w;; Y Z{ata)

Multiply by 2aa’ (z + a{, {nd then determine the constant by
supposing @ =0; thl{S‘ ¢ obtaln the 1dentity
a (o4 o) (as+ 4 \-hx(a + o am 4 b
. ....’ =au [(o+&) s+ b4+ + (ba'—0'af
</
If we jntegrate a function between assigned limits the
result, gt be the saine by whatever wethiod we procecd ;
and Aancthis manmer we may cobtain variouns algebraical

1de~uﬁtles

¢ \'~' Take, for example I (1 — 2" dw, where n 15 a positive

integer. ‘We have, by ngnt-edrating by parts,

® J- w"ﬁl (1 m)n H IR 71 .
fara—arde= Tt mﬂfw - ) e
therefore f " (1 — ) de = _ﬁ & (1 — wy™ d,
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Proceeding in this way wo obtain

o DO
fnm (1 " de = (m+1Dm+2) ... (m+n+l) N 4
Again fm (1 -a)yds= fa:”‘{l m:+ﬂ(f 21)5?— }fim\
e\, \'
1 n 1 an-1% 1 ey L ~“ (2)

Tmtrl 1 m2” 1.2 mAs m+3fa

Therefore the expressions on the right- ha,tkd\ side of (1)
and (2) are equal if # be any positive integetd, )

RN,
55. By [¢ (%) dz we indicate the{iﬁ;}tion of which ()

is the differential coefficient; angﬁe{ﬁ&ahﬁtmgﬁl (g inl hen
10

we may require the function of Jr{@) is the & erential

coefficient, which we denotg. ‘by J:;r (zydx, or by U‘i’t*’"") e da,

NS

1
and so on. For ex‘lmple the integral of €* is Ee”+01,

where ) s a consk;m} the integral of this is

\\
“ J”e +Ce+0,;

's\l

the mtt,gm} of this 1s

.\ : 1 "
~.\ _ kae"“JrO +O;r:+ .

5
4 being still a constant may be denoted for simplicity

)
2

"\' vAvhere

by B if we please. Pioceedincr thus we should find as the
regult of integrating ¢ successwely for # timus

?ﬁ +d @t A +4, e+ 4,,

where 4, 4 ....... A, are constants,
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It i3 easy to express a repeated integral in torms of
simple integrals. For let u be any funetion of z; let

x.,::juda:‘; let u,_,=fu1dm; let us——-f'u.gd;c;

and s0 on. ¢\
;":,\\
« \J/
B, integration by parts we have ,\\/
Y, = fuldm = xu, - [w % dic = mfudx -ﬁ\ﬁr})}dm;
. \\\
N

A,

= f udw = {{zc f wilar — f @ d‘%‘}%’?\;’

wuhereforbvaiyteagation by pertsp St

e P AN
us=§fudm —£§ ude — 2 | cude + {agud«’fi
o X ""

P \\, i
== :'m;s}— X f au dz + % Jw”udw.
2
% >
The generabformula is
'S
|'a_nzxw\> a fudm —px™t J audz + 1{_(;;21) at? [ atudic — ...,
~N ' ‘
"'\: W
N +(—1y2 (1), L@—_—T +1) w""’far'udw + oeiens
P

i G 1)“f:n“udw.

__The truth of this formula may be casily established by
tpdgctzox_l; for if we differentiate both sides we obtain a
similar formnla witl # -1 in Place of n.
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MISCELLANEOUS EXAMPLES.

Y a'de bwd’ e ¢
!‘0\—/—-@;—:;} =15 ' (Assume # = 2 sin’f.) ."\i\\“:'.
Rt d 1 \"/
__ wew N
> S V’(?am—w”)—wa' ,~§\ ‘
N “ ot - &%) da - ' (1 _ e_"i) ’\\\"\,
o V(-2 2 2 O
de _ T NXO -
CE F] Ty Db (a4 815
4 (C& + J,‘”) (b * .’I/')) Zab (aj{ iE;\'-.fw_cl.l:u‘auljbl'::n"y.ol'g.in
’\’\« . +
Hodfon = dfu +a), and 7 ié\zf‘posﬂwe integer, shew that
f d)(w de 7 gb(x) da.
b+a b a
6. Show thag Tﬁp(x) dn="32 j 625+ 2) dz.

\
»\s./
£

A $/ T f
7. Showihas [ CEnede T

"\v Jy T¥cose 4~ {Change & into = — &)
{

\ &4
S.\;Shew thatf {2ax — -ﬁ”)%"ers_lmdx_'%lr:ja :

AN
w4

X

(Change @ into 20— &)

9. Fiud the limit when = is infinits of

11 1 1
2TV e Tt Ml T -
Resudt, z
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10. Find the limit when n iz infinite of

33, .
(2“) (2?1) (2?1) ... t0 2n terms
1
2

1+1)p +2)p+ 1+3 + terterms'
(a 2n ( % (.a 2;) e W

n
11. Find the limit when » is infinite of {L}

1 >
Result. - (Take the logarithot’of the expression.)
3 AN/

N/

WL dbrauhbl ary.org.if & ,"’;
12. Shew that ; log tan » 43 »t 0,

,s

“,

13, Shew that L\ wlocrsm wdr=log2-1,

14, If f(a) fbg pom’uve and finite from s=g to s=a+¢
She X bow to find the hmit of

,\\ {fﬁf@f(wr) ...... f(a.;.?‘;lc)};}

r\i“‘ when » is infinite; and prove that the limit in ques-

tion ig loss than i [ f{z) dv, assuming that the geo-
metric mean of s ﬁmt(, number of positive quantities
which are veot all equal is less than the arithmetic

1

Erlidd 1
Hence prove that ef” is less than [ ¢'da, unless u
0
be constant from x =0 to 2 = L,
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o

V15,
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The value of the definite integral f Elog (1+ n cos*8) db

may be found whatever positive value is giveu ton
from the formula

ﬂ'

[ log(L+ ncosgé)dé‘——-—lm I+ n) 1+ )R 1+ n )t ...} Y

wheze n, 7, n,...... are quantities connected by tke
equation N
s B s ':'..
Wy, = et \"Y
41 27N
r 4 (n, + 1) \\. )
a7 PR \
Bhew that A
] . &7 cos (uz
{e” COS ¢E i = —-- = (2. ,‘@ \a, constant

(e’ + u?}ﬁw dbraullbral y.brg.in

o
where tangb:—. He:;gcc xs?hc,w that if ¢ cosaz be

integrated » times successwely the result is

o cos (@8 BN 1y ok (b O, 0™

(af +@§

L
Shew that tlae series of whlgh the " term is a* — 1 is
divergent.
’\QO R-I'E

x"\" : 1 "
b\k‘é‘f that the series of which the »® term is (ﬁ) ®

R ,\ convergent if ¢ i1s greater than unity, and divergent
e

if @ is not greater than unity.
Shew that the series of which the #" term 13

ppra)(p+2a).....(p+na)

g (g+a)(g+2a)...... (g +net)

Is convergent if ¢ s greater than p + o, and divergent
if 7 i3 not greater than p +a. Sec Ari. 50.

4

o
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20. Suppose that the ratio of the (n + 1)* term of a series
to the »® is equal to

?:}ﬂ+ARr1+.Bﬂﬂ+ N\
W +an®? 4 b L,

where p is a positive integer, and 4, B, ... o, bp\\axre
constants: shew that the series is convergent ™ a is
greater than 4 + 1, and divergent if a is Qo‘g greater
than 4 41, {7
&v
, O
21. Let d={v'dz, B= I uvdz, O =>8‘*\a’w, and suppose
the Hmits of the iute;gration 1] elsame in the three in-
tegrals ; then shew that AC\s)never less than 5%

[Consider cach integtal as the limit of u certain
wwrw.dbraul SEaatien, then tl{@,@ﬁﬁmplc depends on the koown
algebraical theorcmy that

2 4 7™ [* .
(i +a +AN o o)+ ¢+ . + e
N
18 never @ﬂl&n
(x ¢
oS (e tag +a,6.)%]
NS/
L)
X:\”'
\Y
AL
O
N



77

CHAPTER V,

DOUBLE INTEGRATION, RS
."\\

56. LT ¢ (z) denote any function of «; then wey] have
scen that the entegral of ¢ (z) 1s a quantlty % sﬁ‘ch ‘that
dﬂ—qb {#). The intcgral may also be rega,rded% the [imit
of a cerfain sum (see Arts. 2...6), and henQe 3 derived the
gymbol { ¢ (z}de by which the mtegxéls is denoted. We

now procecd to extend these conpepiptis-aflibradyteogah o
cases where we have more than one. mdependen’c variabie.

s

57. Suppose we hzve to: ‘ﬁnd the value of w which satis-
dd;i_a}—m‘ﬁ (m ), where ¢ (2, y) is a function
of the mdcpandmt \fa:ﬁ:a))les z and % The equation may
be written LY

fles the equation

4 A » J
2 % [dm) ¢ @ 9.
\ dv
[y O~ dy = (=, y),
O
1{\ S gi Thus » must be a function such that if we differ-

M\nntmte it with respect to ¥, considering 2 as constanf, the
“result will be ¢ (=, 7). We may therefore put

v=[dtopdy

du

that is - [a;) (=, ¥) dy.

L

\
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Hence % must be sucli a function that if we differentiate it
with respect to @, considering y constant, the result will be

the function denoted by ( ¢ (2, ¥} dy. Hence
N

- |{ [o0 9 dy} e N

The method of obtaining » may be deseribed hy saying

that we Hrst integrate & (v, y) with respect to y, and hen
integrate the Toslt with respect to w TN

The above expression for « may be more conc.'@e};v written
thus, )

\ ff¢ (@, y) dy de, or ”(ﬁ) {z, ’y){ipg dy

On _this point of notation writers argmpt quite uniform ; we
shall in the present work adopt the Jagter form, that is, of the

wwiiaiERbesdrorpddy we shall pug #y to the right, when we

consider the integration with respect to i petforined betore the
integration with respect to z,@nd vice versa.

58. We might find g by integrett-ing first with respect to
@ and then with respect(to 'y ; this process wounld be indicated
by the equation \ )

& ‘\RQ; ffc}‘) {w, ) dy der.

59. Sindée have thus fwo methads of finding utrom the

$

equatiog»}éi‘zjy = ¢ (a, y), it will be desirable to investigate if

more\fﬁfﬁ one result can be obtained, Suppose then that «,
angha, are two functions either of which when put for » satis-
.. Jics the given equation, so that

\\ ) g, d'u,
' dxdy ¢ (@ y) and dudy ~ ¢ @ ).

We have, by subtraction,

Duy B, g
dedy  dady
that is, dim (j—;) =0, where v=1u, — u,
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. duw .
Now from an equation o 0 we infer that w must be a

constant, that is, must be a constant so far as relates to 2x; I
other words, w cannot be a function of », bui may be a fune-
tion of any other variable which ocenrs in the question we are
constdering,
Thus from the eguation z_?“ (iﬂ) 0 we iofer thax' ‘d
z \dy, dy
cannot be a function of 2, but may be any mh]t:a,I;y f'unctlon
of . Thus we may put

27?2

1 N
3=/ &
By integration we dednce i x’,\\"
L&

’= f fly)dy+ canst&n&brauhbl ATy .OUR.iN

Here the constant, as we, caLf it, must not contain y, but
may contain z; we may‘gic,nof;e it by y(z). And {f(_;) dy
wi will denote by A (@, thns finally

v={y)+ x(®).
Therefore (two valu(,s of # which satisfy the equation
du
dedy
functma one of @ only and the other of y only.

(ﬁ:\ ) can only differ by the sum of two nrbitrary

\'60. We shall now shew the conncxion between double
.'smtesvmtmn and summation, Let ¢ (z, ) be a function of
“and y, which remains continuous so lon.g a8 x lies between
the fixed values @ and &, and y between the fized values «
and 3. Let a, @,, ,,....--&,_,, b be a series of quantities in
order of ma«’rmtude also let @, ¥, Yyrerrer Ymop (3 be ancther
series of quantltles m order of mao‘mtude

Let @ —a=h, o,—2 =k
also let gy, —a=4k, »,—¥

x
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We propose to find the limit of the sum of a certain
series in which every term is of the form

hfks‘ib (m!"—l * .?/3—1 1 3

where 7 takes all integral values between 1 and n inclosive,
and s takes all integral values between 1 and m inclusive ; and
ultimately m and n are to be supposed infinite; also P md
y, arc to be considered equivalent to ¢ and z leqptctlvely
Thus we may take Ak (z, ) as the type of the temms we
wish to sum, or we may take AwAyd (z,y) as K ‘still more
expressive symbol The serics then is

'h'.l {qub (ﬁ, (Z) +k~2¢ {I., 3 I) + kaqb a'! K 9 ""“"—I*»"m(ib \.a Jm—j)}
+ by {kﬁb (@) +hplo,, y) + b (2, YaNor+ + ki (s qu)}

WW W, ’&lLlllbra(uwﬂ';_b}a) FEp (B JI) +:“; """" + ‘I‘Tm‘}b (@, ym—l)}

Consider one of the horm:mtal rows of terms, which we
may write =\

H‘l {klc’b (mr’ a) T Aqu {"Cr! @ll) + k8¢ ($!"P JQ) """ + km(i) ({;U,, y‘nri) }'
~\,
The limit of gga@nes within the brackets when %, k,,...%,,
are indeﬁnitely: ithinished is, by Art. 3,
O
‘. \<; [ ¢ la., y) dy.

S\ be this is the limit of the series, we may supposc the
scx;res itself equal to

~O° ‘ b, ¥) Ay + proas

. Yo
3

where p_,. ultimately vanishes,

Let f ¢, ¥)dy be denoted by vr(x,); then add all the

horizontal rows and we obta,m a result which we may de-
note by

Shor (&) + Zhp,
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Now diminish indefinitely each term of which % is the type,
then ShAp vanishes, and we have finally '

b
[ @ as;
]
B .
that is, j { 6@ 9) dy} da, O\
i o 4 .\ -
This is more concisely written ~\ N
b P K7
[[o@naed, &
dy being placed to the right of do becausp.Jhe integration is
performed first with respect to . < &

61. We may again remind t.Mm}mehb&ﬁayﬁﬁqﬁmre
not all agreed as to the notatigitdor double integrals. Thus

b 8 o\ )
we use f f ¢ (%, y) dody tosTmply the following order of

operations : Integrate $Aaz, i) with respect to y between the
limits @ and 8; then{integrate the result with respect to 2
between the limits 3’, and b, - Some writers would denote the

Y
same order of gperations by f J b {z, y) dydw.

by first 4aking all the terms in one vertical column, and then
ta,kir?}a,ll the columns. In this way we should cbtain as the

& (i, y) dydw; and consequently

a 23

62. \Qle ;njght have found the limit of the sum in Art. 60
b

&
sumy
¢N®
N oo
\ o
\/

J:'quf’ {w, ) dyde = f:_,j b (z, 4) dedy.

a

The identity of these two expressions may also be esta-
blished by the aid of Art. 59, as we will now shew.

Let F(x, y) denote the integral of ¢ (z, y) with respect to
%, supposing @ constant; and let f (z, y) denote the integral
of F(z, ) with respect to » supposing y constant. Then

T.LC 6
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& rg b
[ [e@pdedy=[F@p)-Fiza)a
='E Flx, B de - [:F {(z, o) dx

=5 B) e B)—f b %) + /(@ a)...... (. N

Now let us first integrate ¢ (z, y) with respect to aup-
posing ¥ constant, and then 111teg1ate the result with.fespéct
to y, supposing « constant ; let £ (x, ¥) denote the ﬁnal result.

Ther we obtain N
[ (6@ p)dyde=£6.8~£itt, - £l ) .+§e'<&, 2)...(2).
But, by Art. 59,
ACRIETIC >+~:fu,>\+ X @) overerne 3),

where e (y) is some function of\g wﬂshout x, and y () 18
www dbemdifngtiong of @ without g By making use of (3) we
shall find that the right- hand; member of (2) reduces to the -
right-hand member of (1).

The function ¢ (z, y)™s assumed to be finite through the
range of the integration: for that is involved in the notion
of continuity : see Avts. 2 and 43.

63, Hitherh)\we have integrated both with respect to &
and y betwgent constant limits; in applications of double
integratign,Chowever, the limits in the first integration are
often fmetaons of the other variable. Thus, for example, the

¥iz)
synﬂ{ol I [ (a, 3) dedy will denote the following opera-
1

1310118 First” integrate with respect to y considering x con-
~ (\tant; suppose F (x, ) to be the integral; then by taking
"N the mtewral between the assigned limits we have the Tesult

Fiz, 4 (@)} — Fla, x(=)}.
We-have finally to obtain the integral indicated by

['17 lo ¥ @) ~ Plos (o] de

The only difference which is required in the summa.tory
process of Art. 60 is, that the quantities «, g, ¥,, .. Yuy W
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not have the sume rusaning in sach horizontal row, In the
{r 4- 1)* row, for example, that is, in

}e'r-l-l {I£l¢ (mr * C{) + !‘:2¢ (‘rﬂr » yl) + -kﬂ¢ (:‘trrl 3&) et ?"',,.?5 (:‘U’-! ym_l)}r

we must consider « as standing for y(&,), and y,, ¥,,...... as
a series of quantities, such that y (), ¥, ¥y oYy ¥ (2,
are in order of magnitude, and that the difference befween
any consecutive two ultlmately vanishes, Ience, pmcged{m,\

a8 before, we get f nﬁ {x,, y) dy for the linit of the Sum of
)
the terms within the brackets in the {r & 1)® 1o

64. It is not necessary to suppose the sa,me\ number of
terms in all the horizontal vows; for = is ultimately made
indefinitely great, so that we obtain the ss}ne expression for
the limit of the (»+1)" row whateve;l\may be the number

of terms with which we start.
braulibrary.org.in

65. When the limits in the ﬁrst mtegration are functions
of the other variable we cannafy Periorm the integrations in a
different order, as in Art. 620Without special investigation to
determine what the linitewill then be. This question will
be cousiderad in Chapter XI.

N\
66. TFrom the definition of double integration, it follows
that when the hm pits of both integrations are constant,

fjww)wy)dmdy = [ @) do x [ 4 ay,

bupp&{n@ that the limits in f 4 () dy are the same as in the
mtegratxon with respect to y in the left-hand member, and the
. .I“im.lts in f ¢ () de the same as in the integration with respect

/ to z in the left-hand member. For the left-hand member is
the limit of the sum of a series of terms, such as

hrksqb ('r'r-—l) '\# (yrl)’
and the right-hand member is the limit of the product of
h1¢ (wa) + kstp (“m’l) + hsqb (El?,_‘) """ + kn‘# ($n~‘i}’

and B () + T () + B ()t B (Y-
6—2
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67. The reader will now be able to extend the processes
given in this Chapter to friple integrals and to multiple
integrals generally, The symbol

L fmra
[E [ & (@, y, 2) dedydsz
Yoy

will indicate that the following series of operations muaf: b}a
performed : integrate ¢ (x, v, 2) “with respect to 2 betwéeh the
limits & and £, conmdenng z and y constant; next‘ﬁgteomtu
the result with respect to ¥ between the ]mnta K and n, con-
sidering @ constant ; lastly integrate this rmult\wmh respech
to & betwoen the Limits & and &. Here §vand § may be
functions of both # and y; and 9, and ¢ \¢hay be {unctlons
of @ This triple integral is the limifhof a certain series
which may be denoted by 3¢ (w, ¥, z}ﬁ:v Ay Ae,

www.dbraalibrary . org.in “."l

MISOELLAI{EOUS EXAMPLES.

Obtain the followsgg eight integrals,

1, f ﬁA}kz (Put y =ab)

o :“3 Hosult. —gsin"zg.
NANY &
& JeatZhes

e a,alog(m—a) Blog (x—b)  ¢’log (w—¢)
\\} W Result. =+ (a—bj@—c) + G—0)0=0) " c-a)o=0)

tan ade . log (cos®® + m®¢in’ =)

s f1+mtanw Result. SmE—1)

. =1
b e ey
1 .. a”

Result. @ ].Og &"‘—_'F‘—‘\/(am +—mu)‘ .
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b. fsec asec 2o de.

1, M +4/2sing 1, 1+sina

Result: 518 T asina 8% 1 "vma’
N

s / tan @ —tan
) tun a + tan @ A L
Result. sin 2elogsin (@ + o) — & cgz;:\éa}

« N/

v f = Q
. d’}* + a.gmg":i__? . '"'( s.s
1, a"+az+o’ 1.4 *~",1 zas'3
Resul, 4o} log 2 —ar+a tom NCL ez
AY;
_{a—ba)dw Ty
fm Viea® = (@~ 0} (PUt‘a?' —t\bm ¥)
W d aulibrgry.orgin
Q \ I%Iesul%{ ¢08 Vot dah)
'y_,i.} 9. Find the limit when(is infinite of
L) N ;
» —_l®
{sin?r sin 2T ER3T  ain™T "’} . Result. 1.
R ” 2

\\ N’
10. Shew:\f ;ﬂlat _..’I

'[tg:(\} ey de= -E (g - 1) + log /2.

AL
' '{\l\g"'Shew that
A\ S o
o | ]] e"’“’“dmdydz=%~—§z-+e“-g.

~V T 1
\
12. et 4= Uu’dw dy, B= fuvdwdy, O=ff1}* dz dy,

and suppose the limits of the integrations the same i the
three integrals; then shew that 4 C is never less than B%

(Sce Example 21 at the end of Chapter IV.)
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13. It F ¢ (2) dz is equal to unity, and ¢ (2) is always
B 4

positive, shew that

( f ¢ (£) cos ez dz) + ( { “¢: i) 8in oz dz) is less than uuity\‘/\\
] Lg A
(See History of... Probability, page 564.) (.\’)\\>}
N/
4. If f(ﬁ) .(z) dz i3 equal to unity, and gb‘(z@galways
b 2
positive, shew that \{(\/ v
] e 2 \\
[ )~ ({ 2 (2) dz) is paditive.
4B S 3\ {/
{See Hustory oﬁ..Proba%@, page 564.)

www.dhradglibrary.org.in AN
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CHAPTER VL
O
LENGTHS OF CURVES, O
. O
Plane Curves. Rectangular co-ordinates, ,:
o\
\.

88. Ler P be any point on the curve AP(;}, and let =, y
be its co-ordinates; let 3 denote the ler;\gj;h of the arc 4P
measured from a fixed point 4 up to {,‘
@rﬂf{yﬁdbl'ﬁﬁlibrary_org_in
¥

@ Q I

then (Differertinl Caleulus, Art. 307)

N

{ >’) d o
Kol SVARC IS

 H
He\;i\\m o= «/ {1 + (%)'} da.
dy

From the equation to the curve we may express = in
terms of », and thus by infegration s becomes known.

69. The process of finding the length of a curve is called
the rectification of the curve, because Wwe may suppose the
question to be this: find a right Kne equal in length to any
assigned porticn of the curve.
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In the preceding Article we have shewn that the length of
an arc of a curve will be known if o certain integral can be
obtained. It may happen ingmany cases that this integral
cannot be obtained, Whenever the length of an are of a
curve can be expressed in terms of one or hoth of the co-{\
ordinates of the variable extremity of the are, the curves

said to be rectifiable. N\
"\ N
70, Apphcation to the Parabola. "y
The equation to the parabola is y = /(daw} ;, hulce
"

dy _ Ja ds__’\/(x+a)_ '®)
dz A = do” A\ = N\
A

thus § == f \/ (ic%) da (Seé Example 6, page 19.)
= (az+ %) + aleg W + v/(a+ o)} + C.

wwrw.dbildrbriidesnstét some consfont quantity, that is, some guan-
tity which does not depefid upon ; its value will depend
upon the position of the fixed point from which the arc s is
measured. If we mdagure from the vertox, then s vanishes
with @} hence to\c@términe (' we have

O\ alogas+ C=0;
and thus s=%(ax+ %) + alog {Vz + v{a + 7))} - alog va

)
’\\‘ =/{ax+#%) +-a log %ﬂt@ .
NI then we require the Jength of the curve measured from
... (the vertex to the point which has any assigned abscissa, we
< have only to put that assigned abscissa for # in the last
expression. Thus, for example, for an extremity of the
latus rectum «=a; hence the length of the are between

the vertex and one extremity of the latus rectum is
a2+ alog (1 ++/2).
71. Tn the preceding Article we have found the value of

the constant ¢, but in applying the formula to ascertain the
\engths of assigned portions of curves this is not necessary.



LENGTHS OF CURVES. . 89

For supposc it is required to find the length of the arc of a

curve measured from the point whose abscissa is @, up to the

point whose abscissa is #,. Let ¥ (¢) denote the integral of
P R

,\/ {1 + (%{) }, and let s, and s, be the lengths of arcs of the ~

curve measured from any fixed point up to the poinis whose

abscissac are @, and &x, respectively, so that s, — s, is{4l

required length; then O
s=[i/ 1+ (@)} do= v @ +0; 50
SV % R&
hence s =y (2} +0; 5=y )+ €V
therefore s, — 8= (@) — (\xq\\

Hence to find the required lengtlf’iﬁ‘e have to puta, and =,
successively for @ in 4 (#) and subttact the first result from
the second. Thus we need notJARENAPHIHHIar Y8 &dRstant

C; in fact our result may be Written
nw::; dy )
wmngfa/ 1 (@)}
72. Appl?}ca’.‘t{b?;'io the Uycloid.

In the cyclioid, if the origin be at the vertex and the axis
of & the tangent at that point, we have (Differential Colewlus,
ALt 3580

& z-/(2);

:':ﬁh'e}efOI'e ¢ =/ (8ax) +C.

ot

The constant will be zero i we measure the arc & from the
vertex,

Conversely if s = /(Saz) + C we infer that the curve is a
eycloid.  And more generally if we have

s+ A=yiB+ Cz+Cy),

where 4, B, (,, and 0, are constants, we infer that the curve .
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is a cycloid. For by suitable changes in the origin and
axes the lagt equation can be put in the form

73. dpplication to the Catenary. O
\\ “
The equation to the catenary is y = 3 (e + e ") hem&e

Wy f o, G}d—;“%(e-w),w\\

x
e

& ,*'.\ 4
—e ?N‘C.

The constant will be zero if we ,measure the arc 5 from the
i B o yp ax £)Ln ™N

™I
AN
\ N

thus s=l[(e;+e"3)dm:9(e

74, Application to the. Chitoe given by the equation
Q
. g"'}‘?‘ + 4t =a¥,

d :Z}Q ds ‘§ + y%)% . a“i’s .
Here da: \—-, A dw ( 3 %
o
il y %
thus ’\,\l - g,é {é{f = %f + O
:\\ &

¢“The constant will be zero if we measure the arc from the

ﬁpmt for which 2z = 0. The curve is an hypoeycloid in which

\t'he radius of the revolving circle is cne-fourth of the radius of
the fized circle. (Sce Differential Caleulus, Art, 362.)

75. In the same way as the result in Art. 68 is obtained

we may shew that
oy
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Or we may derive this result from the former thus;
114 () o= dy\'| dz
W@ e= /@) 5
,da; 2
e N

From' the equation to the curve we may express —\iff

terms of y, and thus by integration s becomes kmwm In
some cases this formula may be more convenient than that in
Art, 68, ’,\

76, Application to the Logarithmic Uz?iwe
The equatlon to this curve ig yAba , or y = be if we

suppose a =¢°; thus o= ¢log g: www dbraulibrary.org.in

@22 tﬁ J_(f_“rf/’)
Cdy ' NdyT Ty
fv’(c’ﬂf"‘% ddy [
T «/o”+y’

The latter .mt’egra,l 18 /(¢ + 4% ; the former is
\<
D7 olog ——H
© TR VEF )
—elog ——— 2 4 (e ¢
"}i[()l“}ee &8 81050+W+'\/(G+y2)+
~&
v

therefore

and

(Art. 14).

77. If # and y are each functions of a third variable ¢,
we have (Differential Caleulus, Art. 307)

/(8 )
el



S

'\ ) Tn this curve » = af, thus
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78.  _Application to the Ellipse.
2
The equation to the ellipse is g -’r-%.; =1. We may there-

fore assume s=asing, ¥ =hcosp, so that ¢ is the com-
plement of the ewcentric angle (Plane Co-ordinate Geometry, 4

Art. 168). Therefore, by the preceding Article, N o
O\
L.g’; = /(" cos’p + b sin'e), S\

and 5= [ (0 cod  + Bsin'g) dp = a /(1 ~ o sisfi e
. i 'S {.‘
The exact integral cannot be obtained ; we}mv however
expand /(1 — ¢ sin’ ¢) in a series, so thap
o, L1, 1w, .
— . L e S S S Rt L TN :

s u‘f{l ) e’ sin® W b 23}4".’68 sin’¢...... i dd,
and each term can be integrated sepdrately. To obtain the
length of the elliptic quadrant welmust integrate between the

Ty s (O

Plune Onrgges." " Polar Co-ordinates.
79. Let r, 6 bethe polar co-ordinates of any point of
a curve, and s thddength of the arc measured from any fixed
point up to thispomt; then (Diferential Caleulus, Art. 311)

'”'xw dS B s d?_, ) .
SO a0 /v *(da)}

hem::g\\? 5 =‘f‘,\/{r“ + (j—;)s} de.

\MS{) Application to the Spiral of Archimedes.
y dr

dg= %
hence 5= [V a) a8 =a [vo+ 6 de
SN R MY R R

The constant will be zero if we measure the arc s from the
pole, that js, from the point where & = 0.
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81. Application to the Cardioid.

The equation to this curve is = a {1 +cos &) ; thus
§= I’»\f{aﬁ (1 +cos 6‘}’ + & sin® 9} dg = a,f,\/(ﬂ +2cos 6) db

N
2\
"\
N\

¢ .6
=32 fcos 3 df = dut sin g + (?‘.

The constant will be zero if we measure the arcfiom the
point for which 8 =0, that is, from the point whetdthe curve
crosses the initial line, N

The length of that part of the curve\which is comprised
between the initial line and a line thr@@gi the pole at right

- angles to the initial line is 4asin E‘::=\T‘he length of half the
perimeter of the curve is 4q sig’%,"%ﬁﬁ%'fs?r‘fé{libmry‘org‘m

82. Suppose we requite the length of the compiete peri-
meter of the cardioid’\ we might at first suppose that it

would be equal to ﬂbj 21rcos’, gdﬁ?; but this would give zero as
KX, ;

the result, which is obviously inadmissible. The ressom of
this may hesedsily seen ; we have in fact shewn that
<

\\" %=ad(2+2cos 8,
’\ 4 P P
ayr{(l hns ought not to be put equal to 2a cos 5 but to 2z cos 5>

. (and the proper sign should be determined in any application
) ofthe formula. Now by s we understand a positive quantity,
and we may measure s so that it increages with 6, and thus

77 is positive. Therefore when cos g is positive, we take the

d

d g. . .
upper sign and pub g‘z = 2a cos 35 w#en cos 5 18 negative, we

d ] -
take the jower sign and put d_; = — 24,008 5. Hence the
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D
length of the complete perimeier is not 2u f
’ U

d
cos Q(Zé), but

» 9 FL B i . .
2a " COS 5 a8 — 2u [ €08 5 df, that is, 8a. This result might
i} Jr

have been anticipated, for it will be obvious from the sym-'\
metry of the figure that the length of the complete perimeter
is double the length of the part which is situated on ond side
of the initial line, and this was shewn to be 4 in the pitced-
ing Article. N
&/

83. It may sometimes be more convenié&;}b to find the

length of a curve from the formula )

s=[y/ {7‘2 (jg)m}d?

whicl: follows immediately fromythat in Art. 79,

www.dbraulibrary.org.in o

mm\.J
\

<

84, Application fo the ;I:éga'r"ithmic Sprral,
o ¢
The equation to.fhis curve is » = ba®, or » =be? if we sup-
L AN dé e
pose a=¢*; thué\ﬁ— ¢ ]{)gg ; therefere  * i and

OF= V(1 +e)dr=y(L+)r+C
fud the length of the portion of the curve which has »,
a,?d}; for the radii vectores of its extreme points is

[+ o dr, that 15, V3 + ) (1, 7).
The angle between the radius vector and the corresponding
tangent at any point of this curve is constant (Differential
Calculus, Art. 354); and if that angle be denoted by «
we have ¢=tana; thus \/(1+¢") =seca; therefore %-—-sec &,
and g=rseca +C. Hence (v,—r)sec is the length of the
portion mentioned above,
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Formulm tnvolving the radius vector and perpendicular,

85. Let ¢ be the angle between the radius vector r of
any pomt of a curve and the tangent at that point; then

wbqb- — (Daﬁ'erentmﬂ Calculus, Art. 310). Let p be thé.,

per pendlcula.r from the pole on the same tangent ; thew O

V(= ?,iz \ O

sin ¢ = £ therefore cos $= 7N
V=), Y
thus E = - H O
ds 7 rdr
therefore —=--—+5—¢, &nd 3
dr (' —p") V=)

86. Application to the Epic;y’tzﬁmd
With the notation and ﬁgu:re hihehraibracy Vi tidus,
Art. 360, it may be shewn Jdftat the equation to the tangent
t0 the epmyclmd at .P EN
w\ cos & — cos ath ?

==~’— (’“m)s
g\ ¢in 6 — sina—;;-bﬁ

where = ‘ahd y are the co-ordinates of P, and 2’ and g the
variabl@yto-ordinates. Herce it will be found that the per-
pex\léula,:r p from the origin on the tangeut at P is given by

a+2bsm H
& retosTin;
\/ also ﬁ=a=+4b'(a+b)sm2—b,
2
thus 'P==Ei{c:i—_E?_J’ where ¢=a + 2b.

Henee, by Art. 85,
§ = Vi — a?)f‘\/( rdr . _N’(ﬂs; a").v((cg-— ) + ,
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At & ousp r = a, and at a vertex v = ¢; thus the length of
the portion of the curve between a cusp and the adjacent
vertex is

_i_-:fr,ﬂ) rdr ' — o . Ab{a+b)
f JF=75 that is Fa ~—, that is T
Hence the length of the portion between two consecutive cusps\
86 3b(a+b) b) QO
=

2NN
{ "

87. A remark may be made here snmlal\to that in
Art, 82 If we apply the formula

§ =~ a')\/(c )):

ol ﬁg—@aﬁlﬁ%l] hﬁtween two con&eeutwe CUsps, We arrive

at the result %e smce = gt both limits, The reason is
that we have used the formula'

s _N@Sd)
e e
while the true ibrn{{ﬁa"is
n/(c —a?) T
dfr P e X

Since, s/ ma;y be taken to Increase continu&l]y, it follows that

Tt 1.9 ?)osmve when » 1s increasing, and megative when = is

dnmmshmg Now in passing along the curve from a cusp to

\ the adjacent vertex r increases, thus g;_ is positive, and we

should take the upper sign in the formula for d— then in
passing from the vertex to the next cusp r dlmmlshes, thus
ds iz negative, and the lower sign must be taken. Hence the

dr
length from one cusp to the next cusp

Q)
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_W{—-a") I“’ _ordr W(E—aY) f“ rdr

R Y e R A RV Camrs
_ 2V —al [" rdr :_85 (a+b)

o Lan (6 =) a

O\
88. From what is stated in the preceding Article, it ap-
pears that if the arc s begin at a vertex the proper forsuld is
A

é__i\/{cz_as) v "‘.\M
dr a (=)’ ...“' S
(et —a") rdr . ch&&s : e
therefore s=— ( . f‘\/(cg_?g)=g£ 5 )'\/(c -7

. . . \Y;

No constant is requived sinee we’fgégm to 1.easure at the
point for which r=r¢; the ibrmula}hokls for values of s less
tha__n 4‘M) § ‘,“’
: a : o\ o www.dbraulibrary.org.in

It may be observed th@“ﬁ’iﬁus

i

Ea V{r* = p).

AN

89, Simi af@»for the hypocycloid we may shew that
:“e_cﬂ (aﬂ_?ﬂ)

I/
S‘llf’l,l'\f)?é"é~2 less than &’ ; then we may shew that

A4 ds _ W(@"—¢%) r
;.\\ &oE Nt =o'

.. ;"\:f‘a;,nd thus s may be found. The length of the curve between
) S (a—1)
a .

aﬁ

-, where e =g — 25,

two adjacent cusps is

Next suppose ¢” greater than o°; then we should write
the value of EZ‘—g thus,
dr
ds + N =a) 7

dr a S :«.7-“")";
T. LG 7
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in this case b is grealer than ¢, and we shall find the length

ot the curve between fwo adjacent cusps to he a0 E) hb—a) .

When a=2b we have ¢=0 and p=40; in th:[s case the
hypoeyeloid becomes a straight line comcldmg with a dia-O\
meter of the fixed circle. A

If =5 we have ¢ =a®; in this case the dmommdt{o?m

the value of p* vanishes; it will be found that the hvpo&yclmd
is then reduced to a point, and r=a. N

Tt may be shewn as in Art. B3, that if' s be &sxsmcd from
a vertex to & polnt not beyond the adjacenp Busp, we have

¢ — o )\
s=+° 5" b=
the npper or lower sign being takcn a,eco;dmg as ¢ is groater

or less than a. « \J
www.dbraulibrary.org.in W™

Formule involving the Pe’i};end@cwlm and its Inchination,

90,  Amnother methiod® of expressing the length of a curve
is worthy of notice.

™3

at

Tet I be a point in a curve; o, y its co-ordinates, Let s
be the Tength of the are measured from a fixed point 4 up
to P. Draw OY a perpendicular from the ongm ¢ on the
tangent at I’, suppose 0¥ =p, 'Y =w, Y0Or=40, then
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p=wcosf+ysn b,
. u=wxsinf— ycosd,

ﬁ%=—0')t9, gi=—cosec€;-
therefore
%:—a:sin5+ycos€+cos€§—g+3inﬂg_gs_%, AL
di’n_ f;f'.w_ . . da dy\"'
g@—~gg—-—xcos_ﬂ—ysmé’—sm9@-{—00‘3}’9\&5@

de _ ds N3
:—p—-cosect?@__—p+@w,,\g..

thercfore, by integration,

o \
"2 = — I’pdﬁ +:‘{,\\"
dg J €
p ‘\
thevefore = —dg + f pﬁ%ﬁq.w_d braulibrary.org.in
this may also be written 3%
8 e{-:’::it"; fpdb‘.

Suppose s, and g, “he values of ¢ and « when # has the

value #,, and s, a,l}gl"u}their values when f has the value 8,, then
.\\.,. _ o :
N 8, =8 + %, — Uy = epdﬂ.

We ha.%;éf measured = in the direction of revolution fforq P
and hawOdaken it as positive in this case; when u 1s negative
it withindicate that ¥ is on the other side of P,

(\The preceding results may be used for different purposes,

agmtong which two may be noticed.

e

(1) To determine the length of any portion of a curve

“ when the equation to the curve is given; for from that equa-

tion together with gy = — cob @ we can find  and ¥ in terms
b4

of 8, and therefore p which is equal to z cos § +ysin 8 ; then
s may be found from the equation

_dp [
s—@+jpd6*.



www.dbraulibrany.org.in

100 LENGTHS 0F CURVES.

{2} To find a curve such that by means of its aic u pro-
posed integral may be represented ; for if the propesed inte-

gral be [ pd6, where p is a function of 4, the required curve is
found bly eliminating @ botween the equations \
fj’ d £
g — g N\
@ = p cos wsm(? y=psinf+ 6@0&. &K

) ‘Z'P  \\J
and then the integral may be represented by s~ 5

This Article has been derived {rom Hwa&wa I;ategml
Caloulus, Art. 136, A\S)

81, The resulis of the preceding Arbkcic may be obtuined
in another way. Let p denote the ra{kl\é of curvature of the

) ‘/

Z QO

B

curve at Py let OP =y and let s, %, and & have the same
meaning as before, then from the Differential Calenlns we

have .
as dr dp  dr
o= 73 and p= ‘rdp therefore ="
Also DPY=rcos OP Y:-—’rffi'

dsﬁ
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therefora j—‘g =—PYV=—u
Lot PO be the radius of curvature at P; draw OQ perpen-
dieular te (0 The locus of €/ iz the evolute of the curve
AP, and ¢ C iz with respect to this locus what PY is with
respect to the locus of 2. Let &, p° be the polar cd-ordi®
nates of @, and let F='; then

A\

L\
;. _7_T L :’\ *
&=0 3 and p t_a. >
dp' _ _dp’__du_dp o
dg ~  di d'-ﬁﬂc@ﬁ’?.\"

Also p=PQ+QU=p+u’=p+§—£;

And Q=4 =—

but therefors s & J. A8

ds
P~ a9’ '\-.‘%\aw raulibrary.org.in
From the value of PY we C&n obtain an easy proof of a
theorem of sowe interest in thie Differential Calculus (Differ-
ential Ualeulus, Art. 329).4\llet p, denote the perpendicular
from O on the tangent at Y to the locus of Y; then (Differ-
ential Culoulus, Art, %845)

A 1 dp
A (da)

since p i th\@}a‘[iius vector of Y Thus

oLl r
Y LL,e e o
O PP b y2
ﬂJlﬁrébre 7, =£
A .
"\ A particular case of the formula

7

8
§,— 85+, — % = pdﬂ

should be noticed. Suppose we take a complete oval curve
without singular points; then 8,=48, + 2w, and 4, = %,; thus

#,+2n
the complete perimeter of the curve is fe, pdb.
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03, Application to the Ellipse.

C A \

Let APB be a quadrant of an ellipse, CX the perpendicu~

lar on the tangent at P; let 40Y =4. \ihun ( Plane Clo-
ordinate Geometr: ‘i, Art. 196) OY =a Q B sin® 0y

therefore AP+ P¥=aq fm — i 0) db,

www dbraulibrary.org.in
the constant fo be added to thes m‘temﬂ is supposed to be s0

taken that the integral may v&mqh with 6. If R be a point

such that its excentric a.ncrie is & — 6, we have, by Art. 78

& 5
'b{‘s,—}a’ V(1 — ¢t sin’9) do;
thus AP PT =B, ).
2§ ""# dp _ ac*sin @ cos @
And tg~;9y“ Cd8 Y-8y

L'ei\*i;\;ﬁb the abscissa of P; then by Art. 90,

R\ dp
“fsj?tp cos _Hﬁ sin g

i :
N 2 ae® sin® & cos & acosd
NJ =av(Q-—¢sin*f)eost+ VA Fsin ) V- en' )

Thus PY = &z sin 0 ; and if z bc the abseissa of R we have
& =a cos (% - ) so that PY = o . Thus (1) may be written

BR—AP=E:03:' ....................... {2);

this result is called Faguani's Theorem.
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From the ascertained values of  and # we have

e @ —a'sn’'d o —a®
1-—¢'sin®d &’
1- B
&
therefore et — & (B + 2 + ot =0 ¢

Thus the equation which connects x and 2’ involves these -
quantities symmetrically ; hence from (2) we can infep. bbb
kH £ 3

BP— AR = % z#', This 15 also obvicus from the ﬁguijﬁ:.\ -
The length of PY is also equal to the le{iéﬁh of the

corresponding straight line at . )
We may observe that the value of PY\hdy be cbtained

-more simply by means of a known preperty of the ellipse.

Yor suppose the normal at P to be dpa¥m’meeting (74 at G5

and throngh P draw a straight line paralle] to (04 meeting C¥

at Q. Then PQ = CG =és, by @%%@B?%ﬁ@ﬂ%%‘g-%d
PY = PQ sip= ¢ sin 0.

93.  Application to t}eafffypeﬂ‘bola.
K\
O

£\

L\

Let € be the centre und 4 the vertex of an hyperbola,
CY the perpendicular on the tangent at 2. Let ACY =4,
and OF = p; then it may be proved that

PY—AP= aj'm ~ ¢ gin® 6) df.

A\
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This may be proved in the same manner as the corresponding
result of the preceding Article; we may either make the
requisite changes of sign in the formule of Art. 90, which
are produced by difference of fignre; or we may begin from the
beginning again in the manner of that Article. The constant
to be added to the integral is supposed to be so taken thafo

the integral may vanish with 8, \*
\

Suppose o the greatest value which 6 can have,( (then
PY has its least inclination to the axis €4, and (l’e’.rme -
ordinate Geometry, Art. 237) cot a = +/(e* —1). When P moves
off to an infinite distauce PY — 4F becomes thd excess of
the length of the Influite asymptote from (f¢wgt the length
of the iufinite ]nperbohc arc from . Thus this excess

13 a,’ V(l — ¢ sin® 9)‘97{?.;.\ i

N/

wiww.dbraulibrary.org.in N

Inverse guesmans oW ‘Er’%e lengths of Curves.

94, Tn the pxecedmﬁ‘ Artlcles we have shown how the
length of an arc of w}mown curve is to be found in terms
of the abscissa of qulable extremity; we will now briefly
notice the mverse\oblem te find & curve such that the are
shall be a glven Tunctlon of the abscissa of its variable cx-
tremity.  N\™

W

Sl{gpuse c,b {w) the gwen function ; then s=¢ (@}
thercfore & (o) = ,\/ {1 + (dv”) }

w\ { 7

NVihus a—;’= 6 @F -1,

2.

and y = |16 @ - 1ide

95. As an example of the preceding method, suppose
P @) = (dox) ; thus ¢'(z) = \/ ;j; therefore
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(¢ _ ) .

Jem o a

Tl Wiee—a") T2 [flex - o)

=‘ How — ) - C vert 2F Oy
(o a}.gvers C+O’. ~L

We may write y/ for y — € and thus we find thaE tho
curve 18 a cyeloid,  (Differential Caleulus, Art. 358 °
&/

96. For another example suppose ¢ (&) ) log = ; thus
: a ' )
qb ('I') - z:,, . . ::\\"

- N\ |
2 & -3.2?2 4!1' ;
Here y =f,\/(z,'é - 1) de= ’ %@fg‘ _( I':ulibreu'_y.ol'g.in
_f " o vf’»: "mda:
RECETIA Oy

o +flat -2+ O

N Tnvolutes and Evolutss.

7. \Vb\lhaﬂv express the length of an arc of a curve with-
ol in@v@%}ttion when we know the equation to the involute
of the'adrve. Suppose ¢ to represent the length of an arc of
a cui¥e, p the radius of curvature at that point of the involute
which corresponds to the variable extremity of &, then (Dif

L Jerentinl Caloulus, Art. 331) s + p =1, where [ is a constant,

\ ) If the equation to the involute is known, p can be found in
terms of the co-ordinates of the point in the involute ; then
these co-ordinates can be expressed in terms of the co-ordi-
nates of the corresponding point of the evolute, and thus &
s known, By this method we have to perform the pro-
cesses of differentiation and algebraical reduction instead of
wtegration,
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9%, dpplication to the Evolute of the Parabola.

Take for the involute the parabola which has for its equa-
tion o' =4ux; let &', v’ be the co-ordinates of the point of -
the evolute which corresponds to the point (#, ¥} on the
parabola. Then by the ordinary methods (Differential Cal-
oulus, Art. 330) we have .

&' = 2a + 3, 9”3_1‘%’ \'
g- ) ‘:} \
and p= 2a (G+ $) . N )
@ ‘O

. ) AN
Thus we shall obtain for the equation to tife evolute

Way* =4 (& — 2a)° PN

: £ TP
and p=2u (m)f;u‘

www.dbraulibrary.crg.in daz
; Iz + % &
therefore §+2a k SN =
S

Suppose we measure s"{%om the point for which &' = 2a,
that is, from the point which corresponds to the vertex of the
parabola; then we see\that s increases with 4, so that we
must take the lowefgign in the last equation; also by sup-

posing @ = 20 ahd & =0 we find { = —2a; fthus
oM , 4
) 3,=2a(m+a) — 2a.
N 3a

This vglue of & may also be obtained by the application of
the &I&a i ry method of integration.

N 99. When the length of the arc of a curve is known in
“\terms of the co-ordinates of its variable extremity, the equa-
© Viien to the involute ean be found by the ordinary processes
of elimination. ’
‘For we have (Differential Caleulus, Art. 331)
da’
de__ 1 ds
T _x_ L P%}
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where the accented letters refer to a point in a curve, and
the unaccented lctters to the corresponding point in the in-
volute. Thus

o de!
&= +p£i .................... a1}
Similaa'ly y:y'—_l-‘ pgi{ ........................ (2')\."\'

."\.

If then & is known in terms of &, or of &/, or of hoth, by
means of this relation and the known equation tp&ths curve
da’ dy’ . O .
dZ‘ and id'z—,; and p s known from the equation
# Fp=1 It only remains then to elimindte % and ' from
(1) and {2) and the known equation to théeéurve; we obtain
thus an equation between @ and y, Shich is the required

we tnay {ind

equation to the involute, PANY;
. \y'ww.dbraulibrary.org.in

100, Application to the Gzz&émafy
The cquation to the c@éﬁuﬁry is

\—c = =
n - (2% g * ,
Oz
b\ , ¢, E
and ¢y f=glt-e),
. NO . o -
supposing{&> measured from the point for which &' =0 and
% = ¢ 3¢ shall now find the equation to that involute fo
the ‘eatenary which begins at the point of the curve Just
spécified. :
e X "We have then
\\"' dy s dd o
de ?

o [t

S ——
¢

r dmf
dy ¢

th % ¢,
IIS d‘gf y_’ 3 d 8.' yuf ?

and p = s, no constant being required, because by supposition
p vanighes with &,
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Hence equations (1) and {2} of the preceding Article become

, e
&E=& ——,
)
) 22 CIL S
y=y-5=4—""=2
¥ ¥ ¥
’ Feo ""Ué I £\ °*
And S=M”—02)='\/(—z""2) V=5 D
K NS
k) b R N
therefore R Ve -y : N
¥ e A

thus @ =& — +/{F — 3%} ; therefore & = /(¢ -—”gfi‘&r- @.

We have then to substitute these valus$of « and % in
the equation to the catenary, and thus Olgbam the required
relation between @ and y. The sub thrtion niay he con-
veniently performed in the fo]low ing 1ner ;

www.dbraulibrary org.in ?/ =3 Lc _|, € §);

k.

therefore Niy* =Y % 5le ( i ) ;
therefore yP (Gt — ) = ce",

¢.& s,.} ' L4 I
therefore \%‘ =elog ‘w .
Thus ﬁnalb;~ \ Y + Nid—y=clog— A Citd ) .

¥
’lhime"u\rvc is called the fracfory; on accomnt of the ra-
dicalnthere are two values of # for every value of y less than
¢ thest, two values being numerically cgual, but of opposite
gigns, There is a cusp “at the point for which =10 and
N\ y = ¢; and the axis of » is an agymptote.

\ 101. The polar formulse may also be used in like manner
to determine the involute when the length of an arc of the
evolute can be expressed in terms of the polar co-ordinates
of its variable extremity. We have (Diferenticl Culeulus,

Art, 332)
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' Here, as before, the accented letters belong to the known
curve, that is, to the evolute, and the unaccented lotters to the
roquired fnvolute; hence since the evolute is known, thereisa
known relation between p” and #. And s'F p=1, so that if
| ¢ can be expressed in torms of p” and » we may eliminate
# and ¢’ by means of (1), (2), and the known relation betwego
o and 7. Thus we obtain an equation connecting p aund &,
which serves to determine the involute, L\
! 7 »

102, Applicalion to the Logam'th-m'ic- Spiral. <\

In this curve p =7"sin «, where « iz the goystant angle of
the spiral. If we suppese the involute XD begin from the
pole of the spiral, and &' to be mcasuredJpom that point, we
have p=¢=7r"seca (Art. 854} Th@ ;}1) of the preecding
Article becomes

P = ract g gt 2?‘1{?’513{; E’www,dbrauljbrary.org.in

= 1" sec? o -+ 7'* sinda + p* — 2r'p sec a, by (2).

From this quadratié for p we obtain
% im 3 ] F}
({p—7rseca=17r cOS
b\
N 7 - 2
' {1+ cos’ a) , and
oS &

But this solution

If we ’tejée"the upper sign we find p =

Y 2
then _ffom (2) we find »* = 1—+—§SS§S Xy
O c
méﬁ}\b"bcl rejected, because from it we should find p or
N + 3 cog® , . .. . .
\?’E}; = wTa"'(i—i-—co:;_c_) ¥, which 1s inconsistent with the .
™ equation p= ¥ gega,

~
) g
If we take the lower sign we find p=? Eﬂa, and then’

CoS &
¥ sin®e
osta '

from (2) we find +*= thus p=vrsine. Hence the

mvolute is an equangular spiral with the same constant
angle ag the evolute has.
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Intrinsic Byuotion to o Curve.

103. Let s denote the length of an are of a curve meagured
from some fixed point, ¢ the inclination of the tangent at the
variable extremity to the tangent at some fixed point of the £
curve; then the equation which determines the relation
between s and ¢ is called the infrinsic equation to the cuyrie)’
In some investigations, cspecially those relating to invelgtes
and evolutes, this method of determining a carve ig sivipler
than the ordlnar} method of referring the curve to re(,tahgular
axes which are ewfrinsic lines, '\\,

104. We will first shew how the .mz‘rma?c equation may
be obtained from the ordinary equation, N/

Suppose y =f («! the equation to\q curve, the origin
being a point on the curve, and ﬂle axts of ¥ a fange.nt at,

ww&hﬁﬂ’&l%@%&t}? given equat’lon we have
dy 1N

(2) = O

B r -y

thus @ is known in teqns of tan ¢, say @ = F(tand); then
% F' (tan ) sec® b ;

.'\3
(Y7 S==cosec
22 dx & .
d:

O
ther@i%é g

bv hypothesis ;

also

3—(% = F" (tan ¢) sec® ¢ cosec ¢ ;
from this equation s may be found In terms of ¢ by integra-
\~1:10n A similar result will be obtained if at the origin “the
axis of # be the axis which we suppose to colncide with a
tangent.

105.  Application to the Cycloid,
By the Differential Caleulus, Art. 358, we have

dJ \/ (2'a_) Es,ala}p?
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therefor S T
erefore xuéinﬂ_qg’mu @ sin” ¢,
da .
prs = 4a sin ¢ cos ¢,
) N
%:coaccgﬁ%:éacosqb; r:\:\’
therefore s=4dasing +C . O

The constant will be zero if we suppose s mc.a,sﬁfégﬁ from
the fixed point where the fivst tangent is drawngthat is, from
the vertex of the curve. RS

106. Having given the intrinsic qq@}&}tfon to deduce the

ordinary equation. ~N
Wi have 9 _ n é; O
ds R\Y www.dbraulibrary.org.in
therciore @ ——;fdé st ¢,
Similarly Ly = f ds cos .
O

- Nowsis by eh?position known in texms of ¢; thus by
integration we\aday find » and y in terms of ¢, and then by
eliminating\$/we obtain the ordinary equation to the curve
i termgofe-and 4.

N
) &71' Applisation to the Cyelord.
WVHere s = 4q sin ¢;
7

o\ Y,

\/ thus wzfds sin¢=4af31n¢cos¢d¢=0—acos2¢,

y=fdgcos¢=éafcos”gbd¢=0'+2a¢+asin 2¢.

_ Hence by eliminating ¢ we can obtain the ordinary equa-
tion; if the” origin of the rectangular axes is the vertex of
the curve, we shall have 0'=@ and £ =0.
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108, We shall now give some miscellaneous cxamples of
intrinsic equations.

The intrinsic equation to the circle is obviously s = ad.

109, The equation to the catenary is A
yt+o= (e v, )
the origin being on the carve. Henee O
dy -2 e 2 - N
@—2(6 —e s=gld—e };"(>

thus if ¢ be the angle which the tangent at. a\‘v jpoint makes
with the tangent at the arlgin,

b

s=ctan ¢. '\:\

110.  We have seen in Art, 86, that' for the epicycloid

\-.rww.dbl‘aulibrggl'y_orgdgl9 — 0B e+ %5
4 N
t—zf R S Srm— =tan ¢ suppose,
" sin - B sin 8
thus . <>¢ = %_'j' 26 8.
L\ 20

Again, from the same Article,

p \.) . (e — a®) gt~ + 0

x'\"' [£4
"\\
‘§“, . 45 { ﬂ—I—b) (19+ 0
R\ @
N _Ab(a+d) a
\, =t (1-—00355),

Q;
if we supposce s mcasured from the point for which #=0.
_H@+b) (1 - ag )

CO% —
4]

Thus %

We may simplify this result by putting
b= (a+2b) v, a.nds:éb(a(;+b)+s';
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this aracnnts to weasuring the are from a vertex instead of

from a cusp.  Thus
, b (a4l . ad
§o=- gin :
a @+ 257

where the accent may now he dropped. ' ' P

111, Similarly the intrinsic equation to the hypocyclold”
may be written o\

(e =0) 8

- 81 . N
i o~ 25 N, 3

# '{.n
112, It appears from the last two Arti clesﬂf}a‘t s={ginnd
represents an epicycloid or hypoeyeloid, according as » is less
or greater than unity. For example, if ,\J
8= Zsinib s=£s:i:|1g—!5 8= f3iny’, szfsings,

2’ 3’

5 1 o braulibrary.org.in
we have epicycleids in Whic'}.ltgé:’—:;:’i, 1, 5 2, ...
If s=lsin2¢, s=Ism3¢, s=1sin4d, s=1Isin5d,...
pENY b 1 1 3 2
we have hypocyeloidedn'which - ==, =, 2, &, ...
& a 4 38 5
CLI3. If p/he the radius of curvature of the curve at the
point determyined by s and ¢, we have (Diferential Calculus,
Art, 324) NV
"\’:\ 3 e ds
£ ) il T ]
O deb |
V\Fn the logarithmic spiral we know that o varies as ¢ if the
o2¥e be measured from the pole; thus

"\
} ds
" p ] k&‘ = dj& H
1 ds , .
therefore % =3 CE’ and therefore by integration
k¢ + constant — log s ;
therefore g = agh®,

T.i.C.
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where @ is a constant. If we put s=¢ + o we have
g = a (e — 1},

and now ¢ is measured from the point for which ¢ - O.

114. If the intrinsic equation to a curve be knowr, thjtt \

- {0 the evolute can be found. oA\
N\
. N/
N,
Q\
}
N
\\' .
Bl "
"\- b .
\ "
A g o 1
www . dbraulibrarysorg.in ™ %
P o B
/ N N2
4 Ny

..\'
N\
Tet AP be a eurve) B() the evolute ; let s be the length of
an arc of AP medsired from some fixed point up to P; & the
length of an_dre of BQ measured frdm some fixed point up
to Q. It is.éfulent that ¢ is the same both for s and ', if in
BQ we méadure ¢ from BA, which is perpendicular to the
straightlince from which ¢ is measured in 4 P.
\ N/
«\In the left-hand figure s'=p — 0= a C
AN dip
~\J
N/ Jnthe right-hand figure s’ =C—p=('— j—; .

Thus if s be known in terms of ¢, we can find & in terms
of ¢. The constant ¢ is equal to the value of p at the
point corresponding to that for which "= 0.

115. PFor example, in the cycloid s = 4e sin ¢ ; thus

§=0—4acos .
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Put b=~ ; and §" =g +4 (; thus
o = 44 sin r,
Thig shews that the evolute is an eqnal cycloid,

116, Similarly if the intrinsic equation to a curve be, .
known, that to the mvolute may be found. For by Art. 1\14!\

ds . y W
EE)'_ Ois; "'(".2.
therefore & Ef(ci ) de N0
Thus if s be known in terms of ¢, wg,oan find s in terms
of ¢. &

117. For cxample, in the circld $=a¢p. Thus
\ Www dbraulibrary.org.in

szf((}imp) @¢%5¢i%‘#-+ .

If we suppose 5 to begin’;éﬁere ¢ =0 we have (=0, and
further, if we suppose(s to begin where the involute meets

the circle we ha fe'\ig"’=0; thus s = %. (See Differential
Culeulus, Art, 383)

118. it:j\se.’;)bvious that by the methods of Arts. 114 and
116 weanay find the evolute of the evolute of a curve, or the
mvoﬁ{{eﬁf the involute of a curve, and so on.

J119. The student may exercise himself in tracing curves
mxf"inm their intrinsic equations; he will find it useful to take
)such a curve as the cycloid, the form of which is well known,
and ascertain that the intrinsic equation does lead to that
formi; he may then take some of the epicycloids or hypocy-
cloids given 1n Art. 112. For further information on this
subject, and for illustrative figures, the student is referred to
two memoirs by Dr Whewell, published in the Cambridge
Philosophical Tramsactions, Vol. vIIL page 659, and Vol. 1X,

- page 150.

§—2
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Churves of doulble Curvature.
120,  Let @, #, 2 be the co-ovdinales of a point vu a enrve
n space; w+ Az y+ Ay, z+ Az the co-ordinates of an
adjacent point on the curve. Then it is known by the prin-
ciples of solidl geometry, that the length of the chord jonming. £
these two points 1s & {(Aa¥ + (Ay) + (Az). Let s be the
length of the uec of the curve measured from some fixed pgint)
up to (=, y,2); and let s+As be the length of the are mesgtred
from the same fixed point up to (z+ Az, y + Ay, A+ Az).
We shall assuioe that As bears to the chord joining ths adja-
cent points a ratio which is ultimately equal ta Maity when
the sccond point moves along the curve up fo¢lic first point,
Thus the limit of \
N

W

As
As that is, o Az

V@ (BgF+ (Ba)Y \ \/ [+E0+2)}

www.dbraulibrary org.in =N E/ A

o > 3

LN
X
*

is unity. Hence o
ds _ /(:8Y “”-’y)z dz)gl

, P () 4 (22
therefore r\ﬁf\/ {l + ( ds) T Iz d,
From the (é:t;lﬁ’ations to the curve % and J—z may be ex-

pressed invdermns of x, and then by integration s is known in
terms\{f”%.‘ ’

,..[1‘2}. With respect to the assumption in the preceding
Adticle, the student is referred to Differentiul Cadoulus,
“NAfts. 307, 308; he may also hereafter consnlt De Morgan's
NI Difforential and Integil Caleulus, page 444, and Tomer-
sham Cox’s Integral Calculus, page 95.

122. Suppose, for example, that the curve is determined
hy the equations



o
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so that the curve is formed by the intersection of two eylin-
ders, namely a cylinder which has its generating lines parallel
to the axis of z, and which stands on thé parabola in the
plane of (&, ) given by (1), and a cylinder which has its

guncrating hnt,s parallel to the axis of y, snd which standsd
on the "}ilGld in the plane of (i, 2) given by (2). Then |

2\,

dy _ Joan de _ / 2&‘-—.’3;) _ D
e Lwl’ de A ( . g hd

; , 2,
hence %:\/[1 +z+ ,f ) / c'+::r,)

therefore g =/{2¢ + a) [ . @ =24/ (2@, ) .

No constant is required if we meagure’ the are from the origin
of co-ordinates, g\
Q.,”n www.dbraulibrary .org.in

3

123. The formula oweh in Art, 120 may be changed into

o [ () ¢ (5

SRRV {1+ci°:> (@

and in S'Fi’}j{-} cases these forms may be more convenient than

that 1u\’A . 120,

124 Sometimes a curve in space I8 determined by three

..\'éqhatmnb which express @, v, # respectively in terms of an
wJauxiliary variable; then by eliminating this variable, we may,

if necessary, obtain two equations CO:mJectmg z, y, and 2, and
thus determine the curve in the ordinary way. Suppose ‘then
@, y, # ¢ach a known funetion of ¢; therefore

dy de
dy di ds dt
W™ T ™ LT

dt dt
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dz\*}
: =[V/ o (@) + ()
an f 11 + (07'0 - d
_ \/ r]y dz\] ! (fm
a a:, r}.r ' 5"3
c?a" {fy A
{ fr’t (df) } \' D)
i25.  dpplication to the Helix, X N
[his curve may be determined by the equat-i@n{s v
2= qcost, y=usint, 7~§it
thus = Jia' + ,dt~ et o”)\-F .

¢‘ "

ww. dBEfalibMhenr gater co- 01d1nat(:s’ are u<sed to determine the
position of a point in space, we haﬁ ¢ the following equations
connecting the rectangular m)d polar co- ordinates of any
point,

#=7rsinfcos ¢, "’\yu?‘fﬂngblll(f) z=rcos b

And as a curve m\e.\pax‘e is determined by two equations
between @, 7, and % it may also be determined by two equa-
tions hetween, (4 (?, and ¢, 'Thus we may coneeive 7 and
¢ to be kndwh functions of &, and therefore #, y, and z
become lgn(;&vn functions of 8.

BN
OB 0006 T rsingsing % 4 v oos B
\\ @_31116(.09,(,50,9#?31116511196@ + v cos 0 cos B,
dy
gé—smﬂsmgbde—}-? 51n9cos¢dg+rcoaaﬁ'smqb
%:cosﬁi—;—rsinﬁ.

gherefore @ 9)2 + ((ly* ’ + (jzf (32) + rEgin® (jg]) +
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and §= f \/ {?‘ + ( d?t;') + ¢t sin’ 8 (i%)z} 0.

This may be transformed nto

[/ d9\2+1+me(g¢)};

'.’. N\
or inte  g= [\/ Egz) + ¢* gin® 9]- do. D))
1 :.\ .

127, If p be the perpendlcular from the orwzn pn the

tangent to a curve in space, then the equation 77
ds o O
ViCE o ,

which was proved for a plane curve’ m}\ﬁn 85, will still
hold. For each member of the equatl\n expresses the secant
of the angle which the tangent makes ‘with the radius vector
at the point of contach. o\ ~ww.dbraulibrary org.in

. wirdr
Thervefore 5=

RGN
'\‘ ) EXAMPLES.
1. Tor what{Values of m and n are the curves a™y" =

recty‘i@bﬁa {See Art. 1.))

{ 1. .
~\:\ Result, If ; + 3 ig an integer.

2, \hew that the length of the arc of a tractory measured

\ “\ from the cusp is determined by s =¢ log§

3. Shew that the cissoid is rectifiable.

4, Shew that the whole leugth of the curve whose equatlon
is 4 (& +3") —a'=3a 844 i3 equal to 6a.

[It be shewn that (d"‘ )g a! ] |
at <] awWn a — = —5 2 Z 1"
&y 5 dy 4‘3"5 (a§ _yg)
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5. The length of the are of the curve
(@ +y) = (o~ y)t=dd

between the limits (#, »,) and (@, y) s

O\

1 1% 1 ’ i 2 A o

gl +t+ @ -l 5o @+ ) + (o — )W O,

e\
6. 1f s=ae’, find the relation between 2 and ». ‘,u'f" ) :
7. Shew that the intrinsic equation to the pg.rgik@h"is ) |
ds _ 2a or s="Io 1+sing __asiﬁf;{; |
dep  cos® T2 %8 T g AT sin g

8. The intrinsic cquation to the Curvey® = g4 is
8
8= E’? (sec® b ALY
ww . dbraulibrary.org.in .::.’:‘“

9. Bhew that the length of{the arc of the evolute of a
parabola from the clisp to the point at which the
evolute meets theparabols is 2 {843 —1); where 44
is the latus rectiiyr of the parabola.

N\ . . .
10. The evolute ’Qi% epicycloid is an epicyeloid, the radius

of the fi&®&d” circle being a_:_% and the radius of the

g%rei'fhi“ng circle a_jb‘z_b (Arts. 110 and 114.) !
’\ N/ 1

11. Slkw that if the equation to a curve be found by
¢ eliminating 8 between the equations n

N\
) 3

\, a = sin G (6) + cos Oy (6),
and ¥ = cos 6’ () — sin " (8],
then  s=+(6) + 4 (4).
12. Shew that the length of the curve 8a'y = 2t + B :

measured from the origin is Swa‘ (@ + 4a®)t,
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CHAPTER VIL RN
.”{\ 4
/
. AREAS OF PLANE CURVES AND OF SURFACL{
\\o
Plane Areus.  Rectangulur Formule. Smg\fnteq? “ation.
A

K
m:ﬁ}dbl -aulibrary .org.in

Fi

|

| B
| S

128, Let D \lfe a curve, of which the equation is
¥y= (5’3) and sulﬁoqe @, # to be the co-ordinates of a point
P, Lot 4 degofe the ares included between the curve, the
aixis of z, te 6rdinate P}, and some fixed ordinate DB, such
that 08 g algebraically less than «; then (Differential Cal-
ttelus An\t,s 43)

, ’\§ ﬁ = ¢ (%) 1
AN
‘:hcnce A =f¢ () da

Let A (&) + € be the integral of ¢ (z); tbus
A =o{z) + 0

Let A, denote the area when the variable ordinate is at &
distance .:e from the axis of g, and let 4, denote the area when
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the variable ordinate is at a distance w, from the axis of y; |
then

A=A @)+0, A=)+ C;
thevefore 4,—d =+ {2} (z)= f 4‘,(# () d.

o e

o\
129, Application to the Circle, 'S\

The equatwn to the cirele referred to its centre as: ongm

is y'=d'— &"; here ¢ () =4/(a® — ") ; thus
o
4= f{f)(r)d:z: f\!(a—m”)a’,c md(a 7) ,)Sm -I-C'.

AN 2
The constant ¢ vanishes if we SUPPO slthe fixed ordinate
to coincide with the axis of . Tt will(Be' scen by drawing a
figure, that the area comprised between the axis of @, the axis
wqfwﬂ bﬂaﬁlﬂj}&l% ibhe mdmat@*&t the distance @ from the
axis of y, may be divided intowa ‘triangle and & sector, the
values of which are given by»ﬁhe first and second terms In the
above expression for 4. This remark may serve to assist the
student in remembermg;thb important 111tegra1

i 2_’2’3"'; ’3,\/(@ '_932) 1%
’ N ’.b\z\d.'f: ) 2 sin” 0

180.  Aghlfcation to the Kllipse.
Supposé”it required to find the whole area of the ellipse.

&

The eq'\udtlon to the ellipse may be written y'= 2(.trf"—mz).'

" ]E.hance the area of one quadrant of the ellipse
b mat _ mab
& 4

O f 2 V(@ — &) di = f,,/(a—+m’)dm— ==

" hence the area of the ellipse is wab.

H

131,  Application to the Parabola.
"The equation to the parabola is 3* = 4aixr ; here then

b (@) = v/ (daz),



o\

N

\
3
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and 1 J{daz) do = -—“’K dt+ 0

thus with the notation of Art, 128
-[* Vi az) do =22 (w} - o).

If #,=0 we have for the area “113*!_{3 that is, two-thmd’s“
of the product of the abscissa @, and the ordinate ;\/’ (4«(&:)

7

132, Application to the Gyeloid. | m\'\"

The integration required by the fonQ}Ia { ydz becomes

sometimes more easy if we e)xpress & d'y in terms of a new

~ varviable, Thus, for example, Jux $hd “cycloid we can pub

{(Dnfferential Calewlus, Art, 398; 5w dbraulibr ary orgin
&= a{l—cosﬁ'}, oNp=a(f+sind);

therefore l‘ ydw = o f“ (9 1 sin &) ¢in 6 46

'x,":—..:\z“fﬂsin9d9+{—f’—f(1~c0326)d9;
L\

this gives 4% (‘—- feosf+sind) + - ( _ 28) .

)
If w u\ta,ke thu, between the [imits 0 and « for 8, we obtain

2,
the \&{B of half a eycloid ; the result is 3-%?1-. Hence the

N

area of the whole cycloid is equal to three times that of the

\genem,tmcr circle. :

133, The equations to the companion fo the cycloid are
z=q(l—cosf), y=al;

hence it may be shewn that the area of the whole curve is

twice that of the generating circle.

134, If a curve be determined by the equation @ = $(y)
then the area contained between the curve, the axis of y, and
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straight lines drawn parallel to the axis of = at distances
respectively equal to y, and y, is ’ ¢ (yydy. This is ob-
vious after the proof of the similar propo%ltlon in Art. 128,

1353. The formule in Arts, 128 and 134 furnish one of « N

the most simple and important examples of the application of 4

the Integral Caleulus. As we have already remarked, thel \ _
problem of determining the areas of curves was one of tlw@t
which gave vise to the Tntegral Calenlus, and the b\mhols
used arc very expressive of the process necessary fus ‘qo[vulg

the problem.  In the figure to Art. 7, the btmlu\t\m]l sce
that the rectangle PpN.If may be approprmbel\ denoted by
yAz, and the process of finding the arca of DFB amounts

1o this; we first cffect the addition c!eno\‘ by XyAz, and
then diminish Awx indefinitely. o

P d‘é:@aul%uﬁ%? SR require the alea “fomtained between the

curve %= ¢sin o the axis of an.d ordinates at the distances

@, and a lP&pLLtlvelv from tl’I’O,cLX1S of y. We have

[

L "sin~ J:z’\* i} cos E — coSd a; i
Suppoese then r\g\{} and @, = am; the avea is 2cq. Next
suppose @, =0 and\g, = Zar; the result

.\ '\ @ @,
8\ Git (‘Ua — e 30E =

,j\"' \ it 54
becomc\&lo in this case, which is cbviously inadmissible,
sm% ‘she aren musk be some positive quantity. In fact ﬂln%:
18 .negac-we from @ = @ to 2 = 2g, but in the proof that the
4

Grea is equal to [ ydw, it is supposed that # is positive. If
y be really negative the aves will be f(— i) da
Thus in the present example the area will not be

it
.
(— ]111 —) de,

law o car g
: cf 8in = di butcl sm—d.-r:—.LcJ
] “ S & Fre
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" r [ decm

that 1s, ef sin=dx—e¢

. i
sin = dat ;
R & R 4 :

thie will give 2oe + 2ce, that 18, dca.

Plowe dreas. Rectungular Formade.  Double Integration.

187. Tn Art. 128 we have sapplied a formula for finding
the area of a cwrve; that formula supposes the arcato be the)
limit of & number of elemental areas, each clement beiby .
quantity of which yAw is the type. We shall now pradeed to
explain another mode of decomposing the requiredyared Into
elemental arcas, m'\'\"

T
. _'L‘Ebraul[brar .org.in
o N vOr8
___-_IL_‘--‘ L‘_L._’_‘ —1 =
I~ S .s:t' —:_'“" ef/
A |
# \,_Jl_,.— b
ADTTI@
N
O |
g .\'} [ T W F’y @

Suppé{:cé we require the area included between the curves
BPQ.Q\'AM Bpge, and the straight lines Bband Fe. Let a
serien of straight lines be drawn parallel fo the axis of g, and

anather series parallel to the axis of 2. Let st represent one
“vef the rectangles thus formed, and suppose = and y to be the

co-ordinates of s, and @+ Az and y + Ay the co-ordinates of
£; then the arca of the rectangle sf is AmAy. Hence the
required area may be found by summing up all the values
of AaAy, and then proceeding to the limit obtained by sup-
posing Az and Ay to diminish indefinitely.

We effect the required suramation of such terras as AzAy
in the following way: we first collect all the rectangles
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" gimilar to st which are contained in the strip PQgp, and

WL

we thus obtain the area of this strip; then we sum up all
the strips similar to this strip which lie between Bb and
Fe. The error we may make by neglecting the element of
area which les at the top and bottom of each strip, and ¢
which is not a complete rectangle, will disappear in the limit

‘when Az and Ay are indefinitely diminished, oA\

Let y=¢ () be the egnation to the upper curvenand
y =1 (z) the equation to the lower curve; let O%<¥ and
OH =k, then if A4 dencte the required area, we ha%e

(k[ ¢*¢
4= ’ [ dedy; "‘\
Se i
for the symbolical expression here given @eﬁotes the process

which we have just stated in words. { &

¢ () "N\’
Now [dy =1, therefore f dd2d (x) — ¢ (z); thus we
ﬂ.lc:l%ulibrar'y.org,jn kbf:t:}:;

R '“
4= [ ) -+ @) da

Tn this form we call at'once see the truth of the expression,
for ¢ () — (2} = FL pli= Pp; thus {¢ (z) — +fr ()] Az may
be taken for the akes of the strip PQqp, and the formula asserts
that 4 is cqualNjo the limit of the sum of such strips.

The straighit lines in the figure are not necessarily equi-
distant: that is, the elements of which AwzAy is the type
are nqt\xig\:essa,rily all of the same area.

"Q‘S The result of the preceding Article is, that the area
435 found from the equation

O\

e
. 4= @+ @)

This result may be obtained in a very simple manuer as
shewn in the latter part of the preceding Article, so that it
was not absolutely necessary to introduece the formula of

double integration. We have however drawn attention to
the formula

ko) .
A:Jff dedy

. #(x)
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because of the Mlustration which is here given of the process
of double integration; the student may thus find it easier to
apply the processes of double integration fo those cases where
it 13 absolufely necessary, of which examples will cceur here-
after.

189. If the area which is to be evaluated is boundéd)
by the curves z=+r(y), and x=¢ (y), and straight dives”
parallel to the axis of x at distances respectively equalto ¢
and %, we have.in a similar manner )

B 6 ) 3 AL
a=["1"aya0={ 16 &) -+ QYW
Jad Wi Ja N\

Some examples of the formule of Antlh\IST and 139 will
now bo considered ; we shall see that eibher of these formule
may be used in an example, though\generally one will be
more gimple than the other. o\ #' dbraulibrary.org.in

140. Required the area fi}i’ciuded between the parabola
¥ = ax and the circle y° = 2g= — 2", :

The curves pass through the origin and meet at the point
for which w=a; thq&\if we take only that area which lies
on the positive si(g\"of the axis of 2, we have

T N . et 207
4 =_f Mias — o) y(aa) de =" —=.
-\ &

PAY . . 2 m:
Thgqéfi}olc area will therefore be 2 (% — 23&)

" S’u\ppose that we wish in this example to integrate with
¥éspect to o firt. From the equation y'=2az—a" we deduce -

Nt a & o/ (0 —g7), and it will appear at once from a figure

‘that we must take the lower sign in the presentgquestion.

Thus let z, stand for a — /(@' —y°), and =, for %, then

Qg & (g2 ’
A =fnf dyd;{::f {%—G—h\/(a”_y”)} dg
:[gba"_y%&::%’z'—' 2?&, as before.
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The reader should draw the figurc and pay close attention
to the lamits of the integrationa.

141, 1In the accompanying figure § 1s the centrve of 8
givele BLD, and § is also the focus of a parabola ALC; we

Y] g Y
//"' ¢ ,\ -
Z 4,
ﬁ/ \
|B L s

ww.dbraulibrary ofgim —

shall indicate the integrations that should be performed in
order to obtain the arveas ABL and ZDC. This example 18
introduced for the purpose of illustrating the processes of
double ntegration, and\hot for any interest in the resulis:
the areas can b Qﬁsﬂy ascertained by means of formul®
already given ; thus 4 LB is the difference of the parabolic
area A LS and{the quadrant SLB; and similatly LDO i3
known, N/

Take . for origin. In finding the area ALB it will be
convc{i@t' to suppose the positive direction of the axis of #
to hesbhat towards the left hand; thus if 4a be the latus
reetym of the parabola, and therefors 2¢ the radius of the
rdle, the equation to the parabola is 2= da (a—:x), and the

“\®quation to the circle is 4 = 4o’ —a®

Suppose we integrate with respect to x first, then

area ALB = { i jx’dy de,
Jo o Jm
where w1=a——g&, e, = o/ {(4a* — ),

For here (v,— x,) Ay represents a strip included between the
two curves and {wo straight lines parallel to the axis of a; and
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strips arc situated at distances from the axis of w ranging
between 0 and 2@, so that the integration with respect to y is
taken between the limits 0 and 2a.

Suppose we integrate with respect to % first; we shall then
have to divide the areainto two parts by the straight line AF,
parailel to 8Y. Let A

= /(4a® ~ dax), y,= 4/ (4’ — 2"); , \' D

N/

LN @
then area ALFzJO ]. do dy = [ﬂ (a—gode; L
. yl o 4 3

(e R
aren AFB = [ l-@ do dy = fa ¥,9%; \ i

dgd

the sum of these two partg expresses th\’aéﬁd ALB.

tion of the axis of # to be that tpwar&” 1 *hand fthen
the equation to the parabola ig@A= 4a (2 + &), and the equa-
tion to the circle is o = 4a’ —~$§

Next take the area LD O, suppo Be‘nglg ﬁosmve diree-
¢ fig

Suppose we integrate w1th respect to g first; let
= (4aF ") and y, = V{40’ + 4az),
L\ ¢ [t -
then :* ~\arca DLO‘: f Yda dy.

CU /Y

Suppose We mtegra,te with respect to z first we shall then
have to.divide the area into two parts by the strazght line LK,
pam],@%o SD. Tet

Ry — = 1 el 7 -
A =+/{4a’— 3", yriaL ]
\ ﬁlien we shall find that DO = 20,4/3 b suppose; thus

area DLK-f dy dx,

N aleaOLE' fjdydm
. )

the sum of these two pamts expresses the arca LDC.
T.LC ]
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142. Omne case iu which the formule of Arts. 137 and 139
are useful is that in which the bounding curves are different
branches of the same curve. Suppose the equation to a curve
to be (y — ma — )" =a’ —a’; thus

y=mz+ ¢ & (0 — 2.
Here we way put )
Yoy =mz+ c — (e —a"), N
p@)=matoti@—a) (D

thus ¢ () — ¥ (x) =24/ ¢’ - 2%}, and the comiﬂéte area of
the curve is o AN

A

@ . N
[* 2o - ) das, thg¥ s, o,

vw.dbraulibrar .or}g_in . . R

143, We liave hitherto supposed the axes rectangular,
but if they are oblique and_jhelined at an angle o, the fur-
mula in Art. 128 becomes “3° '

\o\‘g’\*—- gin w for'a () e,

and a similar chabge is made in all the other formule. It 1s
obvious thab guich elements of area as are denoted by yA»
and AyAgywhen thé axes are rectangular will be denoted by
sin o y&mand sin w AyAz when the aXes are inclined at an
anglg%;"" '

.“\f ‘For example, the equation to the parabola is y°= 4a'z when
~the axes are the oblique systemn formed by a diameter and
\/the tangent at its extremity; hence the area included be-

tween the curve, the axis of x, and an ordinate at the point

for which x=e¢, is
e . L ‘B
sino [ y{baa) dn = LEROVES
S '

that is, two thirds of the parallelogram which has the abscissa
¢ and the ordinate at its extremity for adjacent stdes.
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Plane Aveas. Polar Formule. Single Fategration,

N

(\)

144. Fet CPQ be a curve, of which the polar eqm;}t_ion is

r=¢{#), and suppose r, @ to be the co-ordinates of A point P.

. Let 4 deuote the area included between the cupve, the radius

vector SE and the radins veector S drawaNpe some fized

point €, such that the angle OS2 Is algebraically less than 8;

then (Differentinl Culenlus, Art. 313) ,f ;),\
da (@0

a8 = {?%gw_dbraulibl‘ary.org.in

Henee A=} f (48} do.

|\
e

Ny .
Let () Le the ‘i{begral of 19 (26) , then

O
SNTA=p) 10

Let 4, dopgse’the aren when the variable radius vector is
ab an angujattdistance 8, from the initial straight line, and
lev A, dengte the area when the variable radius vector is at
an anq\u‘}}}r'dmtance 6, from the initial straight line ; then

~.".\\ 4, = ’}z"(gl) +0 A=¥0)+ €

N
QO

P i ;
<\:thcrefore A= A, =pi8) =¥ (0) =}| (GO db.
) 3 )
145, Application to the Logarithmic Spiral,
) @
[u this curve r = be®; thus

R TRE
A= [irer dﬂ:bfee L1



132 AREAS OF PLANE CURVES AND OF SURFACES.

x 2k, o4

and Ag—Alz‘[}j dﬂ_z_)_‘(gc —ec )= 425(,',, —r®,

where r, and r, are the exfreme radii vectores of the area
considered.

146, Application to the Parabole.

Let the focus be the pole, then

2 '\
T H_'—H’ thus A—.%f_(ig_.\“s\ :

cos® -
2

O8NP 9
= 1+ta2—)sec”—d€'= Ftan 2 + < tan® [+ O
rorw dbraulibrat®yiorg in 3 2.5 atmg g tany T

o |

, g. N 8 a? a g
2 \
Hence 4,—A =« (fal} ~§?’£~ tan -2—‘) +3 (ta.n3 § — tan® v‘_.jl) .
&
Suppose that &Q{\—*O and 6, =3 then we obtain for the

‘2

area ¢ + - T thi«x’c s, 4_‘ ; this agrees with Art. 131,
2]

x'\“'
aﬁlother examp]e we will suppose the parabola refer-
red 0\ he intersection of the directrix and the axis as pole,
thﬁ is being the initial straight line. Here
A

\ Nt . cos B — \/(cos 26)

=20 siic @

¥

c0§56'+ cos 28 — 2 cos 8 4/ (cos 26}

s A4 =202 et a9

LI S 2 .
= 2a’ f 20080 si0%0 4o 4 f cos§ v (05 26) gp,
mn*d =y
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Now [2e080-sin’f , J(2 00126 ~ 1) cosect 86
S osintd
= — 2 cot*d + cot 4.
And [cosﬂv‘[{cgs 26) dﬂsz(l _—2E:i1f H)dﬁﬁ; A\
) sin* & sint @ R
assume sin§ =, then the integral becomes O ”
(‘u’s

- f V(' 2) tdt, that s, —§(#*—2)
\:"‘

3¢
%

w ()
)

Hence, adding the constant, we have O
da’ ‘ 2 # da’ ':"'\2

A = {cosec’ 8 — 2)% — = cot’ ﬂ.}\% cot 8 4+ ¢

7 ww{f.d'bl'aulibral'y.org_in

4a* (cos 20)h~cos’0 |

3 R
The constant will be zexd¥f .4 commences from the initial
straight line; for it willde found on investigation that
: 4 {cos 2&?}?- cos” & .
2 Ot 9 - — b =\
060+ 5 KK vanishes when =0

. \Ein’d

=2a* cot 8 +

147, Apﬂ?é&'tion to the curve r =a (8 +sin @), Here

Lo N 2 :
4 =\%\ (0-+sin 0 dp = % f {6+ 20 5in 0 + sin? 6) 46
0\ N

?Jq'f:.' jfisinﬁdﬂ-—-@cosﬂ%—sinﬂ,
" . g sin 24
Jsm“é?dé":%f(i — cos 28) d€=§ - S%)-Jdd— ,
thus A=%{%E-280059+ 2sin9+g-—8£12f}+0. "

. Suppose we require the area of the smallest portion which
is hounded by the curve and by o rading vector which is
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- imelined to the initial straight line at a right angle ; then we
‘ have 0 and 37 as the limits of the integration. Thus the
required area is
& {m
R NS o
| 3 {24 t3 Y }
. O
Plane Curves. Polar Formule.  Double ntegratigi
l e
| 148. TIn Art. 144 we have obtained a formula fowifinding
the area of a curve; that formula supposes the ar@a’to’be the
! limit of a pumber of clemental areas, each eléwient buing a
i gquantity of which 37 A# is the type. Wesshall now proceed
|

' to explain another mode of decomposing ‘$he required area
| into elemental areas. K20,

! www dbraulibrary.org.in
| ¥

| :.' ~ C e : s

| 4

3 Bappose we require the arca included between the curves
i OPBPQE and bpge, and the straight lines Bb and Ee. Let a
AN Y Vseries of radii vectores be drawn from O, and a serics of cirales
with O as centre ; thus the plane area is divided into a serics
: of curvilinear quadrilaterals, Let ¢ represent one of these

elements, and suppose 7 and @ to be the polar co-ordinates of

s, and 2 + Ay and 8 + Afl the polar co-ordinates of £; then the
- area of the element ¢ will be ultimately A8Ar. Hence the
; required area is to be found by summing up all the values of
rA@Ar, and then proceeding to the limit obtained by sup-
posing A8 and Ar to diminish indefinitely.
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We ettoet the required swinuation of such terms as rA8Ar
in the following way: we first collect all the élements similar
to & which are contained in the strip PJgp, and thus obtain
the arew of the sirip; then we sum up all the strips similar
to this strip which lie between D55 and Ee, .

Let »=¢ (6) be the equation to the curve BPQE and
r=+r (¢} the equation to the curve bpye, let ¢ and 3 he\the
angles which 08 and O& make respectively with OF}‘and
let 4 denote the required area, then \ o

4 [‘B (o {6} 26 d K g,
= e ol L
J.;;(ea ' “‘\
for the symibolical expression here given deénbdtics the process
which we have just stated in words. INY

-

7%
S 3

v

g T , O
Now j rdr = e therefore . 'miw\«r,d’braulibfary.org.in )
b ) N’ :
[, 7 = AL = Ly @)

thus we have )
L .
A =33 {[¢ ()] — [ (B dP.
\ i

~In ihis form we can see at once the truth of the expres-
slon, for OP\: ¢ (8) and Op =+ (6}, and thus
SO7 S OFAI-3 i O A0
may\li(}.takcn for the area of the strip PQgp, and the formula
asgexts that the area 4 is equal - to the limit of the sum of
augch strips.

£\

"\; w149, The remark made in Art. 138 may be repeated

v lere; we Lave introduced the process in the j.‘"ormer part of
the preceding  Article, not because double integration ig
absolutely necessary for finding the area of a curve, but
because the process of finding the aten of a curve illustrate ;
double intcgration.

150. If the area which is to be evaluated is bounded by
the curves whose equations are 8=g(r), g =+ (i) respectively,
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and by the cireles whose equations are r=g and r=1, re-
spectively, it will be convenient to integrate with respect o
g first, In this case, instead of first summing up ail the
elements like sf, which form the strip PQgp, we first sum up
all the elements similar to s¢ which are included between the
two circles which bound ¢ and the curves determined by O\
f=d () and #=+{r). Thus we have . L
b i) )
Ar_-/ { rdr 48, _ N

Jad win g

Some examples of the formule in Arts. 148 angd 130 will
now be considered ; we shall sec that either of these formule
may be used in an example, although one miay be more con-
venient than the other, \

151, We will apply the formule t,pl%‘nd the area botwoen
the two semicircles 0P8 and Opb aud the straight line 3B.

www.dbt'aulibrat‘;,y,org.in R

I N B £
Let Ob=cy@B=h, then the equation to OPB is r=1hcos b,
and the g@gt:on to Opbis r=ccos . Thus the area
N\

g g
,\“” T fheos @
! O =[50
O 0 4 cogsd
PR \ faos @
V), Now { rdr= 1 (/7 —¢*) cos*d ;
4 pensd ‘

.

.2 :
therefore the area =3 (A" — ¢*) I cos® 840 = %- (-
o e 0

shall then have to divide the area inta two parts by deseribing

l Suppose we wish to integrate with respect to 8 first; we
! an arc of a circle from O as centre, with radins Ob. The
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area bounded by this are, the straight line Bb, and the larger
semicircle 1s :
X3 ,GDS“"%

, Jc rdr d0,

‘The area bounded by the aforesaid arc, the semicircle Opd, ;

and the larger semicirels is. (N
" O
e N F \ >
f f rdr d6 N
0 » (N
cos—‘l-a “"\'\

The sum of these two parts expresses the requived area.

132, Let us apply polar formuiaﬁb\“{ahe exawple in
Art. 141, With § as pole, the polar«gquation to the parabola

57 (14cosd) =2a or r cosgg =g, Sobiredprauhibienyod &l

}STB; and the polat equation ,.tb'::tahe circle is = 2a. Hence,
if we integrate with respect tovr first,
2 E e
area diB=| |, raddr
\'\\,/ 0 a,secsi
Tt we integtate with respect to @ first, we shall have if

¢

z'\:’ Pa (8
2O areadzB- f : f rdr d6.
A & 1

."\’r;:'Next consider the area DL(. The equation to DO 18
“\cos @ =—2u; the longth of S is 4a, and the angle BSC
3 By - -

is 27 Yot 6, = cos™ 222 g, = cos” (_'?9) -+ Then 3
. 3 t o0 r
“-we integrate with respeet to ¢ first,
4q e . -
~area DLO= [ [ rdy d.

O ey

N

If we integrate with respect to » first, we shall have to
divide the area into two parts, by the straight line Jjoining 8
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with €. The area of the portion which has L{ for one of its
boundarics is
2ar a

—_ il
[T 8
rd@ dr.
J‘ll ;Ea :"\
3 R
The area of the remaining portion is W)
= e\
T -2 secd % \J
J f rd@ dr. N
2 S 2x K ’
g " Q

o N Y
The sum of those two parts expresses the rcqﬁii*ed area.

\¥;
153. A good exampleis supp]ied\‘éj’;}he problem of find-
ing the area included between twd yadii vectores and two
S é‘éﬁ%ﬁ%’%&%’%ﬁgﬁ% of the same Pg}&.’curve.

\
RN
g
J
i

N
S N
A

oy

L

Suppose BPpb, CQqe to be two different arcs of a spiral,
and that the area iz to be evaluated which ia bounded b-y
these arcs and the straight lines BC and be; then the area 18

37— d8, |
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where +, denotes any radius veetor of the exterior are, as S@,
and +, the corresponding radius vector SP of the intevior are.
The limits of ¢ will be given by the angles which §8 and
Sb respectively make with the initial straight line.

Take for example the spiral of Archimedes; let 4 be the
whole angle which the radius vector has revolved through
from the tnitial straight line until it takes the positionSS724
w0 that ¢ may be an angle of any magnitude. From' the
nature of the curve we have SP or r =ad, whorediis some
constant. If then (/@ is the next branch to BP{'and a still
coiresponds to SF, we shall have S¢ = (d 425}, Suppose
g, and @, the values of ¢ for 82 and Sbh ¥éspectively; thns

the nrea Bbe( ' Y,
& a, . .,:"\ &
=210+ 27 — R4 _
20 (#ww.dbraulibrary.org.in

= % {2 { 22",;59;9’) + 4 (0, 6.}}.

154. The studen.}{’“wﬂ_l remark a certain difference be-

tween the ibl‘muké{f-;f de dy and ‘U?‘df} dr, which express the

area of a plang figure. The former supposes the area decom-
posed intosalimber of rectangles and AzAy represents the
true arca, 8fdone rectangle. Hence in taking the aggregate of
these refddngles to represent the required area the only error
that’cas arise is owing to the neglect of the jrregular ele-
ments which oceur at the top and bottom of each strip; as
Je'have already remarked in Art. 137, But in the second

(Jase rAPAr is not the accurate value of the area of one of

s

the elements, so that an error is made in the cage: of every
clement. It is therefore important to shew formally that the
error disappears in the limit, which may be done as follows.
The element st in the figure of Art. 148 is the difference of

two circular sectors, and ts exact area is
$r + Ay AL — L17A0,
that is #Ar A8 -+ 3 (Ar) AB.
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In taking the former term to represent the area we neglect

3{Ar) Af. Hence the ratio of the term neglected fo the
term retained

_ T}(Ar)éAf? _ Ay

T orArAf 29
By taking Az small enough this ratlo may be made as spiall
as we pleaso. Hence we may infer that the sum of\d
neglected terms will ultimately vanish in comparisonvith

the sam of the terms refained, that is, all error d1=mp‘pmls in

the limit. ",
4 ,\

Other Polar Formulm\

155. Let s be the length of the afc ‘of a curve meagured

from some fixed point up to the pgiliwhose co-ordinates are
www slgmd | throfey. oyginthe perpendiculaw’from the origin on the
tangent at the latter point; then the sine of the amul(, between

df
this tangent, and the caucbpondmc rading vector Is v o e {Dif-

Jerential Calculus, Arg 310); also‘: is another expression for

+9a

this sine ; . llenée\w\@ =‘E. Let 4 denote the area between

the curve and; certam lumtmor radil vectores; then
N \

\\21 [?de lr—ds=lf P s = éfpds,

the' hmlts of s in the latter integral must be such as corre-
épond to the limiting radii vectores of the area congidered.

\ ) The rosult can be {lustrated creometnba,lly; suppose P, @
adjacent points on a curve, S the pole, p' the perpeudlcular
from 8 on the chord P@; then, the arca of the triangle P@S

L p xchord £2Q.

Now suppose € to approach indefinitely near to P, then
P =p, and the limit of the ratio of the chord () to the
are L4} is unity,
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T _ d . prdr
Binee fpds pdrd [‘/(r‘ 7 (Art. 85),
we have A= %fvgrdf
156.  Application to the Epicycloid. : A ¢
N\
Here p -(%ua) thus O

Ad=1 f o /(7 —a") rdr _ I‘ J(-’rg—a,’):'r:d?:
i a\»"(c _?e) Za )v, & — a-{&;ﬁ,ﬁ_ae)}
¢ . 2z

=5l

JE ST =) where \3“\%«» —a

Now
WW dbraulibr ary .org.in

f <z fx,f W(c ﬁad) dz+(c — ") JF=a

VieE— @t = 2% zgj

— (B 2 ;—:—-—-—-—-——— g-" f-2)de
—(6 a:,,l., ‘V‘,(Gg_ az_zz) f-\/({} @ z) e
_{;"A:@f‘\. N D24 el i
T »—— S ;/{6‘2 . ag) 2
RNt O Gty Bt Y 0 et
S 2

TzﬂQng this between the limits r=ga and r=g¢ we get
&— &

T 5 that is, b (¢ + 8) w. Hence the area is 5~ b (a+ by,

‘t’hat is, (a+320) gba(a +5) 7. By doubling this result we obtain

" the area between the curve and the radii vectores drawn to

(a+25)b{a+b)w
&

The area of the circular sector which forms part of this area

18 wab ; subtract the Iatter and we obtain the area between

an arc of the epicycloid extending from one cusp to the next

two consecutive cusps, which is therefore
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cusp and the fixed circle on which the generating civele rolls
the result is |

b
T (3a + 2b).

Similarly in the hypocycloid the area between the fixed\$
cirele and the part of the curve which extends between b
consecutive cusps may be found. If a is greater than i€ tho
result is . QO

X
Nl

B . AN
w—_ Ba— 20, A\ 3
“ LY
Area between o Curve and s ¥ Wbl ute.

157. In the figures to Art. 114, 1f\w~e\suppose the string

or straight line PQ to move throusrh a small angle Ag, the
W ﬁgpmlhﬁtg}gm éhﬁ two positions of. .the straight line and the
curve 4P may be considered ultimdtely asa sector of a circle ; ;

its arca will therefore be § g%, where p= Q. Thus if 4
denote the whole area bounded by the curve, its evolute, and

two radil of curvature (‘.onespcmdlng to the values ¢, and ¢,

of ¢, we have m\
\\ A= %f
Since dﬂs A 1 , we may also write this -
.\0’3‘ p’

O A=4fpds

the 11m1ts of ¢ being properly taken 8o as to correspond with
the known limits of ¢, Or we may write the formula thus,

AN

\‘ | ' A:%fp@dm

138, Application to the Catenary.
Here s = ctan ¢, Art, 109,

'ﬂ¢l
therefore p = csec’ ¢, A=3 f o' sec’ b d;
B! ‘




N
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and fsec‘q&d(ﬁ =tan¢ + 4 tan’*p + O,

thus 4 13 known.

Area of a Pedal Curve. (\)

N\S ©

159. Suppose that perpendiculars are drawn {rom one

and the sume point in the plane of & curve on all fhe.tangents

to the curve; the locus of the feet of the pergendiculars is

called a pedal curve, the point from which théperpendiculars

are drawn is called a pedul origin, and the'cutve from which
the pedal curve is derived is called the primitive curve.

We have already had occaston in"}&rts. 90...93 to notice
somo relations between the primgihive cprve snd a Opgdl%]
curve : we shall now give a proposi%\{on respecting the adeas
of the various pedal curves Which can be formed from the
same primitive curve by varying the pedal origin.

By the area of a pedaleurve is meant the area described
by the perpendicular #8,the point of contact describes a given
are of the primitive(Cutve.

™~

160.  Thednigins of pedals of o given ares lie on a conie
secbion ; and € conic secbion has the same centre whatever be
the given, Qc{ea. '

Iﬁt\ti' denote the area corresponding to a certain pedal
orighinQ; let 4’ denote the area corresponding to another
pelal origin O let » and ¢ be the polar co-ordirates of ¢

Avith respect to 0. Let p denote the length of the perpendi-
“Cular from O on any tangent to the primitive curve; let p’

denote the length of the perpendicular from O on the same
tangent. Let ¢ be the angle between these perpendiculars
and the fized initial line. Then, as in Art. 157,

a=ifpap  a=ifpap;

the iutegratidﬁs are to be taken between fized lumits,
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Now p'=p —rcos (¢ —F); therefore
-4 ~fprcos (6—6) d¢+z}fr*cosg(¢- 6) dg......(1).

Let z=rcosd, y=rsind; then
A=A = (o + by) + I° + 2may + 0" 2-2"“\
where &, &, |, m, » are certain -tuantities which rpmaln “eon-
gtant f01 every position of " ~

Now (2) shews that the locus of (#, y} for & g}ven value of
A" is a conie section ; and that the conic sedtiong obtained by
assigning different wﬂues to A" are couce[{b{m i

The conic scction is in general an eﬂxpse For, by putting
for I, m, n their values, we have O
www.dbraulibrary.ovg.in

_zﬂ)—i[mumcmm} chosgbdgb} {fsin‘*gﬁd(ﬁ}, i

and it may be shewn that the expression on the right-hand
side is negative ; seg. Example 21, at the cnd of Chapter v. |
Hence by Chapter At of the P.Zcme Clo- of'dma,te Geometry, ;
the conie section Touam ellipze. '

- If the comi¢*section were referred to its centre as origin, . ;
the terms ¢Pfhe first degree in @ and % would disappear from
the equaﬁ‘on (2); thus we see Indirectly that there must be
so‘me\]gat edal origin for which =0 and &= 0. Suppme this |
origitvtaken for O, then we have from (1), -

~O° | _A'=A+g,;fr%cos*(¢—9)d¢;

/

as the second term on the right-hand side is positive, 4’ is
necessarily greater than 4, sothat the origin 0 is that which
makes the pedal area leaist.

In the particular case in which the primitive curve is a
closed curve the conic section hecomes a circle. For the
limits of ¢ may then be snpposed to be 0 and 27 ; and thus
we have I =n and m =0,
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We may just advert to the offect of the existence of
singular points on the primitive ¢urve. In this case it may
happen that ¢ does not always increase from the lower limit
of the integrations to the upper limit, but sometimes increases

and sometimes decreases. Suppose now, for example, that ¢

firgt increases from @ to % o, then diminishes from %w to é T,
72\,
and then increases from ‘]iw to %71‘. The valnes of &, 1% m,

n will then be the same as if ¢ had always inér:édé‘éd fromi

0 to —;—'rr The area of that part of the pedal cg&éﬁaéed out’

1 1 . .
ag ¢ decrcases from gmlogm will ?Oi{%t a8 a negative
quantity. (¥

A memoir by Professor Hirst :@E"Eﬁg hﬁﬁfz&%ﬁ%}"oﬁ%k{’&&
Surfaces will be found in the Rhslosophical Transactions for
1863, O -

SN g

Area of Swfaceszcy‘glj?ewofutio-n. Rectangular Formule.

161, Let A be u fixed point in the curve APQ; let 2, ¥
be the co-ordinates of any point P, and s the length of the
arc AP. Suppose the curve to revolve round the axis of x,
and lot § denote the area of the surface forned by he revolu-
tion of AP; then (Differential Caleulus, Art. 315)
i% = 2arif;
10

N
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thevefore 8= f Zryds o, (1}:

thus  s=[omy e R @),

and S=f2wyf’3§d () oY
dy y .......... J 8 o

Of these three forms we can choose in any parti(;ulg.}"éx-
- ample that which is most convenient. If y cansbe easily
s '
expressed in terms of s we may use (1); if f—éca}n be easily
expressed in terms of y we may use (3); géperally however

it will be most convenient to express yhrid Eﬁ in terms of ©
dwm}ﬁﬁig?%‘ry.org,in . . W »

In each case the area of thel surface generated by the arc
of the curve which lies between assigned points will be found
by integrating between apprapriate limits,

162, Ap_plicatiqn"tbthe Cylinder.

XN .

Suppose a slgl;a%ht line paratlel to the axis of @ to revolve
round the axig.ofk, thus generating a right circular cylinder:
let ¢ be theddistance of the revolving straight line from the
axis of @ Y0

D ds

thep\.%‘"” y=a, and = 1;

N ;ﬁ?éirs'by equation (2) of Art. 161,
8= 2';1"[(163:1‘2 = 2mazw + €,

Suppose the absciss® of the extreme points of the portion
of the strajght line which revolves to be #, and «,; then the
suriace generated

Xy
~%ma [ “dn = 2ma 2, ).
v "1
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163. Application to the Cone.

Let a straight line which passes through the origin and is
inclived to the axis of # at an angle 2 revolve round the axis
of #, and thus generate a conical surface. Then

ds
y=wxtana, and o = seex; A o
L 2\ N
thus hy equation (2) of Art. 181, O
8= 2fn-jtan asec ¢ @ o =7 tan @ seo aa B
.\
Hence the surface of the frustum of a conestt’off by planes
perpendicular to its axis at distances =, &, ywespectively from
the vertex is O
7 tan a sec « (3,7 %),

Suppose z, =0, and lot » be theailiPVIPLaEH A faille
by the plane at the distance %) then »=x,tans, and the
arey 18 N

7 gdsec or’,

164. Applicaﬁgngo the Sphere.

Let the circ]é\}i;en by the equation y'=a’—a" revolve
round the axigof ; here
N/

O dy __=
R de y’
%w: iﬁ" _ (@2)2} _ /\/(1 En) _ E '
a'nd dw \/ {1 vz 9Ty
w\::}:{énce by equation (2] of Art, 161,

\

Sz?w[ygdm=2waJ’dm=2wm+U.

Thus the surface included between the planes determined by
#=z and =, is 2re(z, —x,).

Hence the area of a zone of a sphere depends ounly on the

height of the zone and the radius of the sphere, and is cqual
. 106
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to the area which the planes that bound it would cut off from
a cylinder having its axiz perpendicular to the planes and
cireumscribing the sphere ; and thus the surface of the whole
sphere is 4ma’.  These results are very important.
- ) N

165. Application &o the Prolate Spheroid.

Let the ellipse given by a®" + biat= a'b? revolve ronnd thely
axis of « which is supposed to coincide with the major{ayls

of the ellipse; here A\
dy -~ g}_za: A\, 2
de  ay’ m;\‘

o ds \/ Kt b of{a® — e ’

ﬂﬂld dﬁ‘} = (]— -+ &_4‘1;!) = -— 'q}‘y—\i‘:«— .

Hence by equation (2) of Art. 161, N v

. orb [ whD] Jid
www.dbrauliﬁmr%eré\:[{llz — &%") dw Z,f‘gdg ; \/ i E&-_.g — ::,"*) it

whe @ OGN o . e
= — - 4 'T_‘w') ‘f"‘; 510 1z .
¢ : & g -

The surface generated by the revolution of a quadrant of
the ellipse will beobtamed by taking ) and ¢ as the limits of
@ in the integration,” This gives '

O -
& wab{4(1-g*)+'f%—?}.
1(‘\6.:\':;:&101‘ another example suppose the catenary
‘A .z

&l y-—-f_(e;_}.gt)

2 \*, r =z

\ to revolve round the axis of @. Herc s=%(c‘7 —e ") , by
Art. T3, if we measure from the point for which\ x=10. Thus
we gee that 17 =44+ ¢ In this case we shall find that we

can use any of the three formulse in Art. 161; but (2) will
be the most convenient. :

. 167. Suppose one curve to have for its equation y=¢{z),
and anotber curve to have. for its equation y=+-(}, and let



O
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both curves revolve ronnd the axis of 2. Let s, and s, denote
the lengths of arcs mcasured from fixed points in the two
curves up to the point whose abscissa is . Let S denote the
sum of the areas of both surfoces intercepted between two
plancs perpendicnlar to the axis of z at the distances #,
and @, respectively from the origin. Then, by Art. 161, | A\
: ne
] ds, ds, N\
S= 274‘[ {(,ﬁ(x) e + e (z) do}} da. . W\

< my

For a simple case suppose that there is a cprjvTe which is
bisected by the straight line y=a, so thatlwe may put
y= - x{z for the upper branch and yp&at v (2) for the

lower branch, Hence O
dsl _ Ei_é‘g 'xi\ d
de ~ dg’ \
) % g Q7 u . :
and A [ 2L e 8 i qul]bl'ary.ot'g.ln
Y S 4:7'(?," . d:a.?yf{_ﬁ‘@ﬁ NI}H&‘J]

the limits for s, being fakenso as to coriespond with the
assigned limits of N\

Henee, if there W\duy complete curve which is hisected
by a straight line And ade to revolve round an axis which is
parallel to this straight linc at a distance a from it and which
does not, eut the curve, the area of the whole surface gene-
rated 1s equal th the length of the curve multiplied by Zma.

A\ X
For egwmple, take the circle giveu by the cquation
0" (2 — A+ (y - kB —~*=0,
Hé&d the area of the whole surface generated by the revolu-

\'fiph of the circle round the axis of & will be 27k x Zwre.

There is no difficully in this example iu obtaining sepa-
rately the two portions of the surface. For the part above

the straight line y = &, we have 2« [ yds, that is,

o f [k + yic = (&~ W] ds,

that is, ﬂrfﬂ:ds + 21rf~/{c“ — (& — M) ds.
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The former of these integrals is 2mks ; the latter is equal to

ds de,

9@ lv’[c‘a - (@ —h)% E

which will reduce to wacda: that is, 2mer.  Hence the gupr. &N

face required is found by taking the expression 2wks + 2mad )

between proper limits, A\

\.‘/
%

R
N

Area of Surfaces of Revolution. Polar {f‘ggﬁiﬁcf{&
7 3

168. It may be sometimes conveuient toMise polar co-

oy
ordinates ; thus from Art. 161 we deduee ¢ \\”

W

\
v dbragibr {{gyrggg m[ ® 40 = [ 2% 9 5 b,

‘.ITT?; d@
‘/,d;

where dt‘? ,\/{ ‘—:I».Ldg
1649, 4 pp!zcatzm\b\%&’%ﬂ’w Cardioid.
Here r=a (1 ees @) 5 thus
\

ay{“’i-ﬁ cos )+ sin® 9}:@«/(2+2’cos€)=2acos€

2;
thcref&'ﬁ}\
AN, 0. ol 6.8
”\)B = 4ma® | (1 + cos ) €08 5 sin 8 d6 = 16ma* [cos g sing el
= 32;“ cos‘g—k C

The surface formed by the revelution of the complete curve
about the initial straight line will be obtained by takmg 0

and 7 as the limits of # in the mtegra] This gives
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N
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Any Surfuce.  Double Integration.

170. Let @, y, 2z be the co-ordinates of any point p of a
surface ; £ + Aw, y+ Ay, 2 + Az the co-ordinates of an ad-

N
jacent point g.¢ Through p draw a plane parallel to that
of (x, 2}, and & I\ﬁﬂnc parallel to that of (y, 2); also through
g draw a plage yparallel to that of (7, 2} and a plane parallel
to that ofd(#/z). Thege planes will intercept an element pg
of the gpurwed surface, and the projection of this element on
the plade of (z, ) will be the rectangle PQ. Suppose the
tangent plane to the surface at p to be inclined to the plane
Of‘ {e, 1) at an angle «, then it is known from solid geometry

seoy = \/ {1 + (%‘i)s-r (ﬁ—;)g},

dz

where % and d: must be found from the known .e,quatiun to
J .
the surface. Now the area of P is AzAy, hence by solid
geometry the area of the element of the tangent plane at p of
which PQ is the projection is AzAysecy. We shall assume
that the limit of the sum of such terms as &wA;y sec «y for afl
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values of @ and y comprised between assigned limits is the
area of the surface corresponding to those limits. Lef then &
denote this surface; thus -

- s=f v/ {1 +(E) + (j—y)} da dy,

the limits of the integrations being dependent upon thea
RS

portion of the surface considered, K

171. With respect to the assumption in the preceding
Article, the reader is referred to the remarks on #\sirdilar
point in the Differential Caleulus, Art, 803; he mapalso here-
after consult De Morgan's Differential and Iriegral Caloulus,
page 444. and Homersham Cox's Integral C{Q?Tsulus, page 96.

172, dpplication to the Sphere. N~

3

v w BRI by R8dR to find the argzi of the eighth part of
the surface of the sphere given bythe equation

2 by LA g2,

de _ e\ dr_ _y.
da Y dy &)

Here

T \;82 > a dd
=l /AN L) =[[. ededy

thus 4 .U,\/(l—!- p {-zg dax dy _.[_-‘V’(a’~m2—3/2)'_

Now in* thefigure we suppose OL=g; put y, for Li,
then y, = {8~ &), for the value of g, is obtained from the
equation {o)the surface by supposing z =0, If we integrate
‘with rjeé;ct to i between the limits 0 and y,, we sum up all
the elaments comprised in & strip of which 7. Mml is the pro-
’iget"mfl on the plane of (z, ¥). Now

\ 3 f@rl dy f:l th,' o

dz

$

¢ \J

[l
g4

o V(@ — o= =J NHI—4 2

tl ' =7
s o dea:.

 If we integrate with respeet to 2 from 0 to ¢, we sum up
all the strips comprised in the surface of which 048 is the

QO
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"

projection, Thus E; is the required result; and therefore

the whole surface of the sphere is 47d’.

If we integrate with respect to @ first, we shall have

a emy d?;f?x A o
S:jf*—'_za_l'—'z': N\
oo V{a*—2*—7) o\

where =, =/ (a’—4%). - “\

<
d'\tﬁe area of

~

As another example let it be required to fin
that part of the surface given by the equationy

2"+ (weos %+ y sin o) — a'z\i:"ﬂ,

which is situated in the positive comparfntent of co-ordinates.
This surface is a right circular cylimder, having for its axis
the straight line determined by 2wl dbeasbibi-grsimegsd),
and ¢ is the radius of a eirenlar.geetion of it. Here

dz 205 & (@605 a + ¥ sin &)
— e — EARN h N

da N P

o " N
dz N X {@ cos o + ¥ sin «)
dy L\ z

N\
‘ _ fodxdy__f adedy
thus S_Hf\fz '—f Aot —(weosa+ysina)]’

The go*ordinate plane of (2, y) cuts the surface in the
straighf lites @ = + (# cos« + sin &), and if the upper sign
be tdken, we have a straight line lying in the positive quad-
randiof the plans of (=, y).

AN : :
V" To obtain the value of § we integrate first with respect to
# betwecn the limits y =0 and y = (@ — x cosa) cosec «; now

- dy 1 . ,zcosatysing,
- g = —— §ln ——— < ¢
Vio* —(wcosa+ysina)’l sina a

take this between the assigned limits, and we obtain

I /o . @ COR &
( n-i' __);
¢

sina\2
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’ o A EBCON ]
therefore = {7_? . gip™ d__} dz,

and the limits of the integration are 0 and 5{;’:-_;‘ Hence wo
shall find

a!!

T sinacono )
N
173. It is worthy of notice that two different, wuhces
may have their corresponding elements of arca equ,al Take
for example the surfaces determined by Ziux :\e}. % 4f, and
by az=ay; in each case

(@) (_{ P END
dﬂ d?,l’f’ - {,L\\

g; x?ﬁb‘%‘is dis W{sed this matter in a Memoir cntitled
wwEﬂ o ThSLgnLs %amdom eired, cequwhmtem super; feteruim.

Novi Comm. Acad. Petrop. TomraXVvI. Pars prior. He calls
two such surfaces superficies: mﬁgmenﬁes

The following surfaces ate congruent :
the cone (2 —-»r*} {{x — a}*+ (y — B)°} tan” v,
and the ﬁl@ﬂe 2 cosat ycos B4+ zeozy = p.

Again, the surfacc% determined by the following equations
are coﬂgmsfmﬁ‘
.&q:'a\-- &+
.s\‘ZM =@~y e+ 2y V(1 o),
LNt 202 = (" + - dbey + 20 (o' — ) + I+ N,

\\‘ 2a-z=(:n2—-ﬁcos€+2mysin€—f¢(9)d9,

where ¢ (#) is any fanction of 6, and & is a function of = and
y determined by
' 2ay cos 0 — (& — ") sin @ = ¢ (6),

174. Instead of taking the element of the tangent plane
at any point of a surface, so that its projection shall be the
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rectangle Az Ay, it may be in some cases nore convenient to
take it so that 1ts projection shall be the polar element rAHAr
Thus we shall have

S=ffsec v rd€ dr.

For example, suppose we require the arca of the surfdce,
&y = az, which is cut off by the surface & + ¥ =¢*; heux

Secry=,\/(l+ L+ ) V(e + E)smcew”-;;y érp*_

. 2 A
2w e
Thus S=| | VAT eapdr =27 (0 - o).
Jo a
N
175. Supposca=rsin fcos ¢, y w\émﬂ sing, z=rcosf,

so that », 8, ¢ are the usual polar c%% i BRbe% Py ?q}Pé in

space ; then we shall shew here&fter t e equabion

§= f\/{ (dz (dJ)}d{UdJ

may be transformed 1111:9

5= f/\/{v‘\*\ﬁln 9+(f§6) sin? 6 4 (d¢)}rd9d¢

An ]nde endpnt geometrical proof will be found in the
Cambrid, nd Dublin Mathematical Jouwrnal, Vol. 1x,, and
also in, Q ichael's Treatwe on the Calculus of Opemmons
It ¥ \be remembered that in this formula r = o/ {c® 4+ 3* + 2%,
whrls, in Art. 174 we denote «/(a2” + 3°) by 7.

N
.

Approzimate Values of Integrals.

176. Suppose y a function of @, and that we require
rg;dm If the indefindte integral fydw is known we can at

once ascertain the required definite integral. If the inde-
finite integral is unknown, we may still determine approxi-
mately the value of the definite integral. This process of



156 ARHAS OF PLANE CURVES AND OF SURFACKS,

approximation is best illustrated by supposing 4 o be an
. e .

ordinate of a curve so that .‘ wdz represents a cortain area.

L 1)
Divide ¢— o into n parts cach equal to % and draw n—1

ordinates at cqual distances between the inital and final
ordinates; then the ordinates may be denoted DY ¥ Hasreense
Yus Yneyr  Hence we may take AN
. : 4 0\ w
by, +u+ .. +.) W\
as an approximate value of the required avca. Op'we may
take ' R
;"' (r?fz -+ yu """ + yn-'rl) \} )
as an approximate value. N

We may obtain another approximaﬁ}n'thus ; sippose the

remit h . ith LY :
. ﬁ%&ﬁ%-gglﬁ’lfﬁa% _El%ﬁ_i% and + 1] {:)rdmates joined; thus we

have a trapezoid, the area of:‘z.::hich is (g, +7,,) b e

2
sum of all such trapezolds gives'as an approximate value of
the ares ~
2 & Hu \I
h&i{{r&‘\?—i_% ...... +.’5f,l+'jT+1l"
§ -1

This vosult d8yin fact half the sum of the two former
results. It is{abvious we may make the approximation as
close as _wg:,@lease by sufficiently increasing ». '

The {ollowing is another method of approximation, Let

a parghola be drawn having its axis parallel to that of y; let

Y1 Yo TEPresent three equidistant ordinates, b the distanee

LLctween y, and y,, and therefore also botween #, and ¥,

\ Then it may be proved that the arca contained betwueen the
parabola, the axig of #, and the two extreme ordinates is

. i :
5@1"" 4y2+ys)- )

This will be easily shewn by a ﬁgﬁre, 4s the arca eonsists of
a trapezoid and & parabolic segment, and the area of the
latter is known by Art. 148,

N
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Let us now suppose that = is even, 50 that the wholc area
we have to estimate is divided into an cven number of pieces.
Then assume that the ares of the first two Pieces is

k
3 (3/1 + 4 r ya)’

that the area of the third and fourth pleces is A\
o P ) NS ©
Lo < W/
g Wat 4y, + P\Y

and so on.  Thus wo shall have finally as an a.pny({)’ci’rhate resujt

h v
G2 AL oY) F Y F Y, e+ 7))
. :'\ 4

Hence we have the following ruleshadd together the first
ordinate, the last ordinate, twice thbwsam dballtheasyhersid
ordinates, and four times the sym . 6f all the even ordinates;
then muliiply the result by one-third the common distance
of the ordinates. This rulells called Simpson’s Rule: see
Simpson’s Mathematioal Dissertations 1743, page 109.

Simpson howeverdhelcly made the obvious extension of
supposing # to be aliy) even number ; the case of n =2 really
involves the whole'principle, and this had been given before:
see Cotes De Methodo Differentiali, page 33.

Asan ;e:{‘a-fnple of Simpson’s rule let it be require& to find
W 1
the »'&l*i&)f‘ ’ lﬁ%" Suppose n=10; then we have
\ v i) + .
..;4.‘\ : ' 1

\/ 'If tho caleulation be carried to six places of decimals it will’
be found that the approximate value of the definite integral

is equal to 785398,

1

I 1
?1‘_:1= ys=1+.013 ys_l-{—'O‘i"“ yn_l-l—]_._

In this case the exact value is known, namely g ;7 and

this agrees to six places of decimals with the approximate
value,
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177. Instead of referring to Art. 143 in the preceding
investigation we might have used the following methed,
Assume for the equation to the eurve y= . 4- Bz + O,
where 4, B, and € are constants; and let y,, #, v, denote
the values of y corresponding to the valuss 0, A, 2k of &
respectively. Then

yo=A, y,=A+Bht+CF, y,=A4+2Bh+ 400, O\
and from these equations we can express A, Bh, and £4* If
terms of #,, ,, and y,. The area contained beb\x eall the
curve, the axis of #, and the two extreme ordmates‘ )

- [Tyao=2an+ 231+ BEION

substitute the values of 4, B%, and Ch% sard this exprossion
becomen ..\

3

www.dbraulibrary.org.in = {yl + 4y, -F— Jsj

e &

N\

h
) 2

If the first of the three eqmdlsta,nt ordinates had been
drawn at any point z=ay anstead of the point #=0, we
should have obtained the %ame result, For put x=a-+4' in
the equation fo the cu{’ve the equation will become

A\ 4= P+ ' + B®,

where P, @, and R are comstants; and y,, »,, y, will now
denote the xraJues of y corresponding to the values 0, £, 24
of &, so thab, ythe process and result will be as before,

[f (wé/ take y =4+ Bz+ Oo° + Da® for the equation to
the e, then as we have only three equations connecting
tha  four quantities 4, B, CF, and DR with g, y,, and y, we

~¢annot determine these four quantities; it is however worthy
-of notice that the area will still be expressed by the formula

Just given. For we have

bt ty,r g =240+ 2B 3% +4DI

and thls is equal to
f (4 + Ba+ Oa® + Do) da.



,

'\
“\Meurves which we have explained, we have supposed the
* successive ordinates to be drawn at egual distances. Another

L4
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Let us now investigate an analogous expression for the
case in which four cquidistant ordinates are known. Assnme
for the equation to the curve y = 4 + Bz 4+ Ci* + Da*, and let
Yie Yo Ysr Yy denote the values of y corresponding to the
values 0, k, 24, 3k of x respectively. Then '

=4, . £\
y, = A+ Bh+ OB + DR, N
Yy, = 4 + 2Bk + 4002+ 8DF, A

o= A+3Bh+9CK +21DK; 0

and from these equations we can obtain 4, Bl UF, and DAt

in terms of y,, y,, ¥, and g, The area edutained between
the curve, the axis of a, and the two extreme ordinates

3h TN\ Ny 4

3 ydas = 3.4k + 2P 1y 4 BLD

o

2, :Www_dbraulf‘dﬁl'm"y.org.in
substitute the values of A, Bh,. ,'Oj'h“, and D7?, and this expres-

sion becomes %}L(yl-i— 33;,1—}33;3'—% %,). This result was given
by Newton ; see the end of his Mathodus Differentialss.

Then proceedipg'&s in the latter part of Art. 176 we ob-
tain the followibg\approximate rule, the whole area being
supposed divided into a nuraber of picces which is some
multiple of hree: add together the first ordinate, the last
ordinate, fWite the sum of every third ordinate, excluding
the first/and the last, and three times the sum of all the
other @rdlinates; then multiply the result by three-eighths of
th;eg&nmon distance of the ordinates.

'In the methods of finding approximate values of areas of

method of approximation has been proposed by Gauss in
which the successive ordinates are drawn, not at egual dis-
tances, but at intervals which the method shews will ensure
the most advantageous results. For an account of this
method the student may consult the tenth Chapter of the
Elementary Treatise on ﬂpﬂace’s Functions, Lamé’s Functions
and Bessel's Funciions,
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EXAMPLES

1 If 4 denote the area contained befween ihe cateﬁary,
the axis of x, the axiy of y, and an ovdinate at the
extromity of the arc s, shew that d=cs. The are &8
begius at the lowest point of the curve, A\ ¢

\
. A\
2. The whole area of the curve C:) + (%) =1 s f}ﬂ-ab
{The integration may be effected by assurminy 3
= a cos" ¢b.) o\
3. The ares of the curve y(z"+a’) =7 (a-—x; from x=10

toa—als(f”—-llo 2) ..\\'

\& S\

" 4. Find the whole area between '@h@éurw, y'w = 40’ {20 — ©)

wwrw dbradi d1t§ srEmptote. ,}& Result. 4mas
3, Find the whole area betwnen the curve y* (2°+ '} = a’&"
and its asyrapbotes, o N : Result.  4a’.
S lata) -

6. TFind the area of t‘he 100p of the curve y* = a—z

P i
\\ Result. 2u? (1 - g) .
o~ 2 ,
7 Find | th\e' area bounded by the carve 3 = é}a:—-i-;_) and
the a,symptote = qa, excluding the loop.

\\\ : Result. 24° (1 I) .
"\8 Find the whole area between the curve 3 (20— ) =4
} and its asymptote, Result. #wd’.

9. Find the whole area of the curve (y — 2)'=a" — o
Besult, wa’

10, Find the area inciuded between the curves
2

Yy —dar=0 2"~ 4ay=0. Resuld. 163(.1 :

11.  Find the whole area of the curve « 9y + Bt = a'Ba’
Result. ab.
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12, Find the area of a loop of the curve o¥y' = #*(a* — &7).
B

1)
Result. 5
13, The area between the tractory, the axis of y, and the
2
asymptote is 7:-_; . (Bee Art. 100, and Art. 134.) A
14. Find the area of a loop of the curve \:\'

@' +&7)=a" (@ —2°). Result, % (

™

15. TFind the area of the loop of the curve

16a'y® = b2 (0° — 2ax). ~?hmu. %

16. Find the area of the loop of the cur\é"’

2 (&° + #7) = (a7
dbl. aulibrary . org.in
Result. ¢ ;M{

3y2log (1 +v2) =2}
17. Hind the whole area of ?kge Gurve
2¢* (0 + ') — dayfal= 2"} + (@* - 27" =0
”; N Result, a'r {4! - 5—%/ 2}
18, ¥ind the a;re{of the curve
y-—csm— logSmg

f;gm z=0to &= am. " Resulf. Zac(1—log 2).

19, \I‘md the area of the curve 4= ( ) between & =« and
e\

yl‘; w=p, and from the result deduce the area of the
\ hyperbola zy = o between the same limits.

oy

\, ) 20, F ind the area of the ellipse whese equation is
ax’+ 2bxy +cy®=1.  Result.

v ( V7R
21, Find the area of a loop of the curve "= a® cos 26.
' Result. %.

T.LC. ' 11
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22. Find the area contained by all the loops of the eurve

7= g sin nd.
Result. %ag or —%{f according as # Is odd or even. A
28, Find the area between the curves » = ¢ cos nd and r = =4 \
24. Find the area of a loop of the curve ¢* cos 8 = o? sin ‘}9
Result, 37;1\{— ? log 2.

25. Find the whole area of the curve r =« {c;és 26 + sin 260),
s Result. wd.

26. Find the arca of a loop of the curvé Ew + ") = by
2
www dbraulibrary.org.in o\ hd Resuli. WS_“.

™

27. TFind the whole area oﬁﬁhe cuTve
(2 + y“)’ "4&*@3 +4b6%%  Result. 27 (o*+ 0
28 Find the Wholeiaa,\aa of the curve

w?\\y'ﬁ 1 wﬂ y2 2 . 'ﬂ_cﬂ .
\E + "o P (g + ?) . Result o0 {a"+ o).
29. Find {hé area of the loop of the curve
& 2
\§~' y'— Bamy + 2° =0, Resull, 3—{2;' .
‘3@. Fmd the area of the loop of the curve
\ 4 reosf =acos20. Result. (2—2)a%
2

31. Supposing a greater than b find the area of the curve
_ a* ma’ b’
T m +beos . Result. m + 5 2

32, In a logarithmic spiral find the arca between the curve
. and two radii vecteres drawn from thie pole.
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33. Find the area between the conchoid » = a + b cosec ¢
and two radii vectores drawn from the pole,

34. In an ellipse find the area between the eurve and two
radil vectores drawn from the centre.

35 In a parabola find the area between the curve and two \
radii vectores drawn from the vertex. Ko \’

36. Find the arca between the curve r= a(secﬂ:l—ta;n &)
and its asymptote rcos @ =2a.  Result.s {2 + 2)

37. The whole area of the curve :«-:a(? cos @+ 1) is
(2 +3; ), and the a-rea,',qf\\fhe inner loop is
f( _M) ,W{\!}M,dbrauljbl'ar“y.org.in

2 W

\e/
"

38. Find the whole area ofihe curve » = acos @ + b, where
a is greater than b , Also find the area of the inner
loop.

39. Y zandy bBiﬂ} £0- ondmates of any point of an equi-
lateral h@eﬂ;ola #*— ' =a’, and u the area inter-
ceptedsbetween the curve, the central radius vector
drawti' X0 the point (#, ), and the axis, shew that

W e W
~\‘:\w_-g(e“‘+e @, y=§(e“’-e @),

4:0. Flnd the whole area of the curve which is the loeus of
NS the intersection of two normals to an ellipse at right
C; ol angles, Besult.  w (a— b},
It may be shewn that the equation to the curve is
. {@°—¥) (o®sin’8 — " cos’d)"
T (@ + 5) (a8 sin* 6 + H7 cos® )F°
(See Plane Co-ordinate Geometry, Example 53, Chap-
ter X1v.)

-2
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-41. Find the area included within any are tracced by the
extremity of the radius vector of a spirad v a com-
plete revolution, and the straight line joining the ex-

. tremities of the ave.  If, for example, the equation to

the spiral be »= a'(:) —) , prove that the area corre-
. A

gponding to any value of @ greater than 2 is ()
aret g et a \ k] . s..\
AR | —{=—1 .
2n+1 {(zw) (27:' / } A\ )

: !
42, Find the area contained between a pambut’d,ﬁts evolute,
and two radii of curvature of the pardldla. (Art. 157.)

o W)
- 43. Find the area contained between ;{c}cloid, its evolute,
' ana two radil of curvature of Phig)cyeloid.

wpd. dbFwHbEREYa0ER - O the surfacesgenerated by the revolution
round the axis of & of thg Curve sy = *.

45, ~ Also of the curve y;‘&.@ﬁ,

46. Find the aveg Qf?r{%e surface generated by the revolution
of the ca'telﬁry y=% (¢° + ¢ °) round the axis of .

4T Shef\z\thgt“ the whole surface of an oblate spheroid is

7\
& 1-& 1+e
N o {1 Ty los 1_—3} '

~ :48:' A cycloid revolves round the tangent at the vertex:

"/ shew that the whole surface generated is —3-' T,

49, A eycloid revolves round its base: shew that the whole
. 64 '
surface generated is 3 T

50. A cyeloid revolves round its axis: shew that the whole
surface generated is 8xwd’ (m — 4).

" o

L
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51. The whole surface generuted by the revolution of the
tractory round the axis of @ is 4mc’,

52. A sphere is plerced perpendiculatly to the planc of one
of its great circles by two right cylinders, of which
the diameters are equal to the radins of the sphere . o
and the axes pass through the middle points of two
radii that compose a diameter of this great cireled )’
Find the surface of that portion of the sphere mgt
included within the eylinders. AN

Result. 'Twice the square of the diameter’ of? the

sphere. o A

53. Find the surface generated by the portidaf the curve
y=atn logg between the iimits,xﬁé}é and z = age.

~\ .
wwwtc!brauhbl'afx_.c‘)\l/'g.m

1. . =W tlog——Y" o,

Resuli, 4ma {1+V’(1+e?}. M2+ Og1+\/(1+e")}

54, Find f ‘jTS’ where 49 repgé’éénts an element of surface,

and p the perpendicular from the origin upon the
tangent plane of £he’clement, the integral being ex-

P { 2 . . . &’:‘ z‘; oL
tended overx{he‘wholc of the ellipsoid ot %2 +ta= 1. _
O ) s s 2, 7w
& Result, _3?{;0(“& + 5% + 'a).
x:\u'
s“\.‘.
..3.\\
s )
"‘\ Nt/
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CHAPFER VIIL Y

VOLUMES OF SOLIDS. (N
L %%

R\
Formule involving Single Integmt*ion.“ﬁo?id of
Revolution. RN

www.dbraulibrary.o{ g.in . 1" »

178. - LEr 4 {be\}; fixed point on'a curve APQ, and P any
other point or}f(t;}jé’curve whose co-ordinates are 4 and 7; and
suppose a)%w'g})raica.ﬂy greater than the abscissa of 4. Let
the curve 3evolve round the axis of 2, and let ¥ denote the
volumgﬁkhe solid bounded by the surface generated by the
curvetahd by two planes perpendicular to the axis of @, one
theatigh 4 and the other through P; then (Differentiol
»@@cuﬂus, Art. 3149

v

av g
&=
therefore V=|ryda

From the equation to thc curve % i3 n known function
o &; suppose Y () to be the integral of 37 ; then

V=or(z) +



N\

\

N
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Let V, dencte the volnme when the point * has =, for its
abscissa, and 7, the volume when the point P has =, for ita

abscissa; thus
Fo= (=) + 0,
VB = 'lllf (ms} +0,
thercfore  V,~ ¥V, =+ () — ¥ (x) = f x’y"‘dx. N\
N

%
o

179.. Application to the Right Circular O’ong.jf

&/
Let a straight line pass through the origin’ %nd make an
angle « with the axis of #; then this straighfline will gene-
rate a right circular cone by vevolving zdund the axis of .
Here y =ztan «; thus &

D
V= f 7 tan®axtde = %ﬁrﬁﬂbrary.or g.in

V- V= T s,

Suppose =, =0, and let r=g,tan a; thus the volume
becomes %;Tihat is, _7_?'%‘5 Hence the volume of
a right circulathcone is one-third the product of the area of
the base in}g"}ah’e altitude.

189.{ S&})plication to the Sphere.

Eeré taking the origin at the centre of the sphere we
have 3* = o’ ~2'; thus

™/ fwygdm = (ffm - —g) +C
. " 2ra’
The volume of a hemisphere = f wiy'de = 5

181.  Application to the Paraboloid.
Herc the generating curve is the parabola, so that
o' = dax.
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Hy

Thus V.-V, = -rrf 4oz de = 2am (2] - 2}).
2

Suppose @, = 0, then the volume becomes 2amx,’, that 1s

Ymy,'r,, where 9.® = dag,; thus the volume is half that of a

cylinder which has the same height, namely a,, and the same

base, namely a circle of which g, is the radius. A\ ¢

¢
182. For another examploe we will take the solid génp®

rated by a cycloid which revolves round its axiss\here
{(Differential Calewlus, Art, 358) AN

K0
y:d(Eax—m*)+avers‘-‘§.
The integration is best effected by puttigg’%f x and ¥ their
values in terms of § (Differentinl Oalc@«ifc}xs,‘m. 358). Thus
www. dbrauvlibrar N \Y
e [t = [0+ sindsin 0 d0.

To obtain the volume gen,ei‘é;‘ted by a semi-cycloid the
limits for 2 would be 0 and 24} “%hus the corresponding limits
for & are O and . 1

_Now fﬁ* gin ﬁd{\:w G*eoz 6 + 2]3 cos Bd8
R D =& cos ?+264in 8 + 2 cos b,
2N
therefore J\’&’fsin 0df =wi—4;
&

2[9;@}9&549 (1 ~ cos 26) da=%’l;@%3§—c°z2a,
Ay e ang T
\tkgerefore 2 fo & sin*8df = 5 -

-

ad [ sin'gds=2 f sin'9d6=2.2. (Art. 35)
Thus the required volume

7 4 3r* 8
= -'u] 2. Z a2l o2 2
e AT 4c+2+,} wa(% 3).
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183, This formula for the volume of a solid of revolution,
V= [ my*de, like others which we have noticed, is one, the

truth of which iz obvious, as soon as the notation of the
Integral Caleulus is understood. In the figure to Art. 7, if,
LM be y and MN be denoted by Az, then wy*Ag is the
volume of the solid generated by the revolution of MNpP
about the axis of & Thus Yary*Az will differ from the yelume
generated by the revolution of ADERB by the sum, of/such
volumes as are generated by Ppf; and the lattersum will
vanish in the limit, Therefore the volume gcner&ted by the
revolution of ADEB is equal to the limit of Z—by Az, that 1s,

to f-rry \
&

184. Similarly, if V' denote % @mglkguﬁ}eﬂxgyihe
¥

swface formed by a curve which reyo ves TOun o
and by planes perpendicular to’the axis of y, we shall have

.Vf-rm

And, as in Art, 17§ \te shall have
\"
\ v~ V,= [ matdy.

\X

185/ 8uppose two cuxves to revolve round the axis of «,
and, thu&"to generate two surfaces, and that we require the
dq}]%@nce of two volumes, one bounded by the first surface
and by planes perpendicular to the axis of @, and the other
\bounded by the second surface and by the planes already
“assigned. Lot y =¢ (%) be the equation to the first curve,
and 9= r (2) that to the second. Then if V denote the
required difference, we have

V= fr i @ do— [m ¥ @) de

= [ [p @)~ (¥ @] de
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If the planes which bound the required volume are de-
termimed by # =z, and # =2, we must integrate hetween
the limits #; and =, for .

For a simple case suppose that a closed curve is such that
the straight line y = o bisects every ordinate parallel to the<
axis of y ; then we have ¢ (¢} =a +y (2} and (7} = — X (x&
where y {z) denotes some function of . Thus K N/

BEr-ep sy, (S
and V= wféa:x ()} da. »,j\g'

Suppose the abscissee of the extreme poits of the curve '
are x, and a4, then the volume generatp\bf by the revolution

of the closed curve round the axis;o‘?\i@ is dam _I s‘x (x) dox.

wwﬂiabf?fmﬁr(aa}?fd?gﬁighe area of ,t@é"élosed curve, so that the

'S

O

n W . -
volume is equal to the produgh of 2a7 into the ares. This
demonstration supposes that the generating curve lies en-
tirely on one side of the.axis of a.

If the generating-urve be the circle given by

R+ (g~ By =,
we have 7c® forats avea, and therefore 2%¢*n? for the volume
generated Py‘the revelution of it round the asis of «.

186&}}11 & similar way if the curves x= ¢ (), &= (),
revolye'round the axis of & we obtain for the volume bounded
bythese surfaces and by planes perpendicular to the axis of ¥

V= [[i6 W)} -t )] dy

187, ' The method given in Art. 178 for finding the volume
of a solid of revelution may be adapted to amy solid. The
method may be described thus : conceive the solid eut up into
thin slices by a series of parallel planes, estimate approxi-
mately the volume of each slice and add these volumes; the
ltmit of this sum when each slice becomes indefinitely thin i
the volume of the solid required. Suppose that a solid is cut
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up into slices by planes perpendicular to the axis of z; let
& (2} be the area of a section of the solid made by a plane
which 18 at a distance @ from the origin, and let z+ Az be
the distance of the next plane from the origin; thus these
two planes intercept 2 slice of which the thickness is Az, and
of which the volume may be represented by ¢ {x) Az. The
volure of the solid will therefore be the limit of ¢ erAf’
£ \

that ig, it will be f &b () do; the limits of the integrationsill

depend upon the partionlar solid or portion of a sold' under
consideration,

¥
For example take 2 prism as defined in E?}clid, Book X,
Cut up the prism into slices by planes whiblr are parallel to
the two equal and similar ends; takesthe axis of @ perpen-
dicular to the two ends. Thus ¢ () igla ¢onstant, say 4 ; the

volume of the prism = { L4dm=x4‘?5ﬁz'%ﬂgr‘éa%ib1§af}¥éor Pen-

dicular distanee between the %0 equal and similar ends,

188.  Application to. a:h‘ Ellipsoid.
The equation to Qié ellipgoid 1s

ne

fa sect,ioggjé“ﬁlade by a plane perpendicular to the axis of @
at a digtdnee # from the origin, the boundary of the section
A &

13 %"h’ilipse, of which the semiaxcs are b \/ (1 - —-,) and
N\ 7

cy(l - ":;%); hence the area of this ellipse Is wbe (1 — z"") ;
‘\i J this is therefore the value of ¢ (@). Hence the volume of
v/ the ellipsoid

oy P
GrEte=h

" z dmabe
=Lw5c (1 - 2) do =g
189.  Application to @ Pyramid.

Let there be a pyramid, the base of which is any recti-
linear figure; let A be the area of the base and /% the height.
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Take the origin of co-ordinates at the vertex of the pyramid,
and the axis of @ perpendicular to the base of the pymmld
then the volume of the pyramid

= [ (=) d.

Now the section of the pyramid made lw any plane oA .

rallel to the base is a vectilinear figure simiar o the bage,)
and the areas of similar figures are as the squares of zh\zlr
homologous sides; and @ and b are ptopomtwncﬂ to. homo-
logous sides; hence we infer that

m'\'\.
b@)=54 O
Thus the volume of the pyramid \\
www.dbraulibrary.orgin = 4 "h 2 2’
TRl

This investigation alsc holds for a cone, the base of which is
any closed curve, N

180. For anotheg example we will find the volume lylng
hetween an hypervhe cud of one sheet, its asymptotic cone,
., and two planes per endicular to their common axis.

Let the egy@,twn to the hyperboloid be

x,\ P ys zi_i . 0
\Y a," A o =\

ami:ih’}xt to the cone
’"\:':.\:’:’ ..I;Q y d — ]
V @ TE g
If a section of the former surface be made by a plane
perpendicular to the axis of 2 and at a distance x from
the ongm the boundary is an ellipse of which the area 1s

vrbc( + l) the section of the second surface made by

the same plane also has an ellipse for its boundary, and its

O
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. T . v .
arca 8 .- . Thersfore the difference of the areas is wde.

£
Hence the required volume, supposing it bounded by the
planes #=, and z=ua,, 15

m
f “wbede, that is, whe (2, ~ ).

191. Sometimes it may be convenient to make sectiéns,
by parallel planes not perpendicular to the axis of . (~If &
be the inclination of the axis of  to the parallel planes, then
¢ (%) sin aAx may he taken as the volume of alslive and
the integration performed as before. 4

192. The remarks made in Arts. 176°dmd 177 have an
application to the subject of the present ,Qhapter.

Let there be a solid such that the.dvey of a section made
by & planc parallel to a fixed planﬁ“éﬁfdjﬁfaé’hﬁ‘&%@rﬁﬁrbm
it is always equal to P+ Qu + B4 82 where P, Q, B, §
are constants. Let three equidigbant sections of the solid be
made by planes parsllel to the fixed plane, 24 being the dis-
tance hetween the two extfeme sections.  Let the area of the
sections, taken In ordes, be denoted by A,, 4., A, Then
the volume of the pQN’jon of the solid contained hetween the
two extreme sec@s, is equal to :

\ k

3 (Al + ‘Lflg 4 Aa)'

NS . .

If foyf equidistant sections be made, 3% being the distance
hetwegn the extreme sections, and the area of the sections
take%@n’ order be denoted by 4, 4,, 4,, 4,, then the volume
of $heé portion of the solid contained between the two extreme.

. Eeﬁi-ions is equal to

B4, e4,484,44).

Hence we may obtain rules for estimating approximately
the volume of any solid. Make equidistant parallel sections
of the solid ; the areas of these sections must then take the
place of the ordinates which oceur in the Rules given In

Arts. 176 and 177.
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Formaule snvolving Double Imtegration.

¥ s

/2/ N
|
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r 8 i o
B ¢ - N
| i \.
T || — {4
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:J:J/""'Z
—F r \ \
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9 W
] & T LM TH

www.dbraulibrary org.in .

5. We will Brst give a formula for the volume of a solid
of revolution. In the figure, let g% be the co-ordinates of s,
and @+ Az, ¥+ Ay those of £, \Buppose the whole figure to
revolve round the axis of 4, then the element s will generate
a ring, the volume of which will be ultimately 2myAzAy:
this follows from the comsideration that AzAy is the area of
st and 27y the perim@ei‘ of the circle described by 5. Hence
the volume genergbed by the figure BFeb, or by any portion
of it, will be theMmit of the sum of such terms as 27y AxAy.
Let V denotg\ishb required volume, then

\V

:\\ V=21rffydwdy;

the,\l‘iﬁhits of the integration being so taken as to include all
Ahie_elements of the required volume.
3

194. Suppose that the volume required is that which is
obtained by the revolution of all the figure BEeb; let y=¢(a)
be the equation to the upper curve, y= () that to the lower
curve, and let OC=m, OH=2, We should then integrate
first with respect to y between the limits y =+ () and
y=4¢{x); we thus sum up all the elements like ZryAcdy
which are contained in the solid formed by the revolution of
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the strip I'Q¢p; then we integrate with respect to & be-
tween the limits @ and #,. 'Thus to express the operation

symbolically
g (b (x)
V= QWL L w? de dy
= [T — v @) 2o A

The sccond expression is obfained by effecting theli’fnté—
gration with respect to y between the asmigned limits) and it
coincides with that already obtained in Art. 185. /),

N\

195. Thus in the preceding Article we'divide the solid
into elementary rings, of which 2mwyAzAyMs the type; in
the first integration we collect a numberef these rings, so as
to form a figure which is the difference of two concentric
circular slices; in the second integwitiurd hreudbiceyatr ghdke
figures and thus obtain the volume of the required solid.
The truth of the formulss of the“preceding Article is obvious
as soon as the notation ofsthe Integral Calculus is under-
stood. N\

196. Suppose theMigure which revolves round the axis
of « to be boun eiby the curves x = ¢ (y) and 2 =+ (y), and
by the straight IInés y =y, and y=y,; then in applymg the
formula for Jjt will be convenient to integrate first with
respect o)y thus

".\" V=27Tj'3"t iy d da.
::\'“ P 4 4
. '.f’hl this case in the integration with respect to 2 we collect
,all'the elements like 2ory Ay Az which bave the sume radius .
“\.%, so that the sum of the elements is a thin cylindrical shell,
/ of which Ay is the thickness, ¥ is the radius, and ¢ (y} — ¥(y)
the height, Thus

" ¥:
Vetn| 160 -+ &)y

197. As an example of the preceding formulwm, let it be
required to find the volume of the solid generated by the re-
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volution of the area AL A round the axis of # in the figure
already given in Art. 141. This volume is the ¢xoess of the
hemisphere generated by the revolution of SLB over the pa-
raboloid generated by the revolution of ASL; the result is
therefore known, and we propose the example, not for the
sake of the result, but for illustration of the formula of double
integration. _ A
£ \

Let S be the origin.  Suppose the positive direction oftlte
axis of @ to the left, then the equation to AL is i*= 4afe~=)
and that to BL is y*=4a"—a" Let ¥ be the requiredolume,

then { ¢
2 "\/{41}2:‘9‘2) "\
V= ’ 2y dy dee.
0 Jaat-p O
4 INY

- If we wish to integrate with respeet t\oy first, we must, as
W“)'t‘,giﬁﬁ%u}%?ﬂgﬁs&the figure AIT’B divided inte two parts;

] I‘y’{mﬂ—x’*}

. ‘ 2 o (dal— 2
2ery da dys- ]- f ary due dy.
S8 Je o

v O S wdat-4na) @

Again, let it be requited to find the volume generated by
the revolution of LD Ghabout the axis of . Let the positive
direction of the axig'ef% be now to the right, then the equa-
tion to L is y* = 4d{a+ ) and that to LD is 3° =4a’— o\
Let ¥ be the r{equired volume, then

,\ V=J‘Ea [4&’4--“9:}2 di d
Q" 0 --[:{m=~m Y ey

Izi‘%e wish to integrate with respect to x first, we must, as
i#@;A’J’t. 141, suppose the figure LD divided into two parts;
Lons
3

\ \_ oy f?aj‘(a 9 du d fﬂa'\(s 3a 9 d dee
= + f L
b aflda?-3f) A 20 2% - dat Ty
=

198. Similarty, if a solid is formed by the revolution of
a curve round the axis of y, we have

V=ff’:21rwdyda:.
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199, We now proceed to consider any solid.,

Let o, ¥, 2 ‘tﬁe co-ordinates of any point p of a
surface, x + Aa:, -r- Ay, z+ Az the co-ordinates of an ad-
Jacent point g\ Through p draw planes parallel to the co-
ordinate planes of (m, ) and (y, 2); through ¢ also draw
planes paxaﬂe] to the same co-ordinate planes These four
pla,n,%s"wﬂl include between them a column, of which P¢ is
the/hase and Fp the height. The volume of this column will
ba ultzmately zAxdy, and the volume between an assigned
portion of the given surface and the plane of (z, y) will be
\ound by taking the limit of the sum of a series of terms
like zAzAy. Let 7 denote this volume, then

V=ffzdxdg.

The equation to the surface gives # as a function of # and
¥ ; the limits of the integration must be taken se as to in
clude ali the elements of the proposed solid.

T, LG ' 12
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If we integrate first with respeet to y, we sum up the
columns which form a slice comprised between two planes
perpendicular to the axis of @; thus the limits of the inte-
graticn with respect to y tay be functions of @, snd we shall
obtain

fzdy =f (@), L\
N\
where f(z) is in fact the area of the section of the soluf ton-
sidered made by a plane perpendicular to the axie of « ab
a distance @ from the origin, Then finally m'\'\.

= | flx) de; \
frogies 3
this coincides with the formula alread’y\given i Art, 187.

wurvr-diggy hblﬁp}’)f biion to the Zﬁ@psozd

Let it be required to find: thie’ volume of the eighth part of
the ellipsoid determmed"by the equation

LA 2 k]
X":‘D\'l'yb_‘z_i_ z_2= ]_,
{ e
Here we haﬂ‘a 4o find

ff\/l“af? dady.

Ft\kst. mtecrra,te with respect to iz then the limits of 5 are 0
gLl that is, 0 and b «/ (1 - Ef) . we thus obtain the sum

\§of all the eolumns which form the slice between the planes
Lpl and Mgm. Now between the assigned lnmts :

W65 fu=20-2)

G Y Lfi (1——)@. o

The hmlts of & are 0 and a; we thus obtain the sum of
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all the slices which are comprised in the solid 0ABC. Hence

wabe
V= K3

201. Suppose the given surface to be determined by
vy = az, and we require the volume bounded by the plane <
: of (w, ‘;), by the given surface, and by the four planes x = a:;,\
Xy Y=Y,y =1, Here the volume is given by N\

¥y O\
V= d N
jm . da dy _ P\ 3
L% :
e ma s ")
_'4“& (.‘72 3/12) (”Ca xl) \ v

1
=4z @@ () ot “Ng oy, +ag)
www r dbraulibr ary.org.in

1
=1(2 1)(5’3 yJ(Z,],"’sz + & +z)

where 2, 2,, z,, 2, are the @nﬂnmteb of the four corner points

of the selected portlon o~
202, Trind- the (3 \%lume comprised between the plsme
#=0 and the suﬁ@&es wy = az and (&~ b)* + (y — k)* = ¢
Here weq ha’vt: to integrate f f %Y dw dy between Timits de-

termmcdhy (e~ + (y— k) =c"

@wf‘;d_/—— and the mits of ¥ are

&w' k= (= (o= i} and ket i (o= m}

\ "’"I‘hus we obtain
2k We' — (&~ 1)}

Hence finally the required volume
=2 fo vl (2= hy} s,

wherc the lmits of w are h—¢c and h+6 '
12—2



180 VOLUMES 0OF S0L1DS,

And
fm Vi = (o~ Y do= [ (o= 1) 15~ (o] v

[yl = (r Y}
Put » -k =t¢; thus we obtain

A\
ft V(= By di+ h fJ(cz— £ dt. O
The limits of ¢ are —¢ and + ¢; thorefore thC résult is

hem

5 and the required volume is

bl .Wj\‘

This result however assumes that zy ispésitize throughout
the limits of the integration ; that is, thelerrele determined by
(w— R+ (y—k)*=c* is supposed tgJe entirely in the first

ww IR R R EE& P in the third gaalirant, If this condition
be not fulfilled our result does ndpigive the arit-hmet'-ii_:al value
of the volume, but the balante arising from estimating some
part of the volume as positive and some part as negative; for
example, if & and % vanjsh our result vanishes.

Similarly in thn%m]::ésult of the preceding Article, it is
assumed that oy i{'\po’siﬁve throughout the Limits of the 1n-
tegration. \

203. TnStead of dividing a solid into columns standing
on rectapgulir bases, so that sAzAy is the volume of the
colummpwe may divide it into columns standing on the
polarelement, of area; hence zrA@Ar is the volume of the
column. Therefore for the volume ¥ of a solid we have the

AAdrmula

- f erdd dr.

From the equation to the surface z must be expressed as 2
function of ¢ and 8.

For example, required the volume comprised between thge
plane z =0, and the surfaces #* + ¢* = 4az and 3’ = Zew — &+

Hore 2z = %; and the limits of » and 6 must be such a8 0

Q"

e
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extend the integration over the whole area of the circle
§'=20z—2". Letr,=2ccosd; then the required volume

P Py gl 4 i 4 i
=f fldﬁdmif cos‘t?df?:z—cf cos 0.0
-t 0 4 L4 & o
- 9%* 8 1 = Baret
T argry WRE=Tn.

'S
204. Required the volume of the solid comprised between
the plane of (#, y) and the surface whose equation i ™

a?tgf €

&/
g=qe & , \
e
Here, since a*+ 38 =+, we have V=a | les@h dd dr
¥ N\

The surface extends to an infin 8 dilPa5eH AT 1% Bii%in
in every direction: thus the limigs™of 6 are 0 and 27, and

those of + arc 0 and oo, &N
o Ny 2
LR, ¢
Now fe = — e__g_ &,
O -2 e
Fopdp = 2,
thus N TO e “rds 5
27
ad 227 Moz
) a

Hence ghé/required volume is 7ac®.

. Ahere is a point involved in this Example which deserves
nefite ; it relates to the Wmats of the integral It is plain
~\that in general corresponding to the limits + ¢ for # and y
\/1it would not be sufficient to integrate between the limits
0 and 27 for 6, combined with the limits 0 and ¢ for #; the
integration in the latter case instead of extending over a
certain square would extend ounly over the ingeribed circle.
In like manner the limits + oo for # and # do not certainly
correspond to the limits 0 and 2 for 8, combined with 0 and

@ for 7. But in the present Example it is casy to see that
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no error ariges; the part of the integral which depends as it were
on the difference between the square and the civele vanishes
in comparison with the rest of the integral. The subject has
been noticed by mathematicians: see the Mdlanges Mathé-
matigues et Astronomigues, St Pétershourg, 1859, Vol. 2, page ¢
65, and a paper by Professor Cayley in the Messenger of
Mathematics, 187 4. : !\
Formaule wnvolving Triple Intogrationg

205. In the figure to Art. 199, suppos¢Jwgddraw a series
of planes perpendicular to the axis of z; leb»'be the distance
of one plane from the origin and =z + AZ\the distance of the
next. These planes intercept from<the column pgl) an
clementary rectangular parallelepipedytiic volnme of which is

W R R RUIBr Ao isle solid mauy bt considered as the limit

\‘;

of the sum of such elements. Fence if V denote its volums,

Y .
p =fj [ dwdyds.
206. Requirgd ’ﬂ% volume of a portion of the cylinder
determined by the equation
p x ., &k Y - 2am =10,
N\
which is, i.Q‘tercept.ed hetween the planes

\"\ z=gtan 2 and z=xtan B
AN -
AHere if y, stand for (2az— 2%}, we have
s ) _ fafg, [otang
ol V= [ f f dadydz
Lo —§ - tlana

22ty
=f { (tan B — tan o) zdx dy
¢ -y
. 2q
=2 (tan B — tan ) [ x (200 — &) dw
Lo

5
=2 (tun 8 — tan 2) % .
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207. The polar element of plane arca is, as we have seen
in previous Articles, A8 Ar. Suppose this were to revolve
round the initial line through an angle 27, then a solid ring
would be generated, of which the volume is 2mr sin OrAb Ar,
since 2 sin @ is the circumference of the cirdle described by
the point whose polar co-ordinates are » and f. Let ¢ denote
the angle which the plane of the element in any pomtwn\
malkes with the initial position of the plane, ¢+ A the aglé
which the plane in a consecutive position makes withthe
initial plane; then the part of the solid ring which*is inter-
cepted between the revolving plane in these two/pesitions is
to the whole ring in the same proportion ag, A(,E is to 2w
Hence the volume of this intercepted part is\

7 sin 0AG A8 Ar. x\\

This is therefore an expression in I’ar co- erdmates for an
element of any solid. Hence the, yalwme.gf; the- é‘ﬂﬁ"hd
may be found by taking the limat’of the sum 0 ale-

ments; tha.t is, if V7 dencte the: reqmred volume,

Ve ffw*,qm 8dgdddr.

The limits of the\mtegratlen must be so taken as to in-
clude in the integrabion all the elements of the proposed solid.
The student will remember that r denotes the distance of any
point from the(origin, & the angle which this distance makes
with some SAzed straight line through the origin, and ¢ the
angle whigh/the plane passing through this distance and the
fixed straight line makes with- some fixed plane passing
thro@ the fixed straight line.

23208, Suppose, for example, that we apply the forrula to

(find the volume of the eighth part of a sphere, Integrate

i

) with respect to r first; we have

Jrar=

Suppose ¢ the radius of the sphere, then the limits of r are 0
and «; thus

V=ff‘§sin 0d db.

&
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In thus integrating with respect to #, we colleci all the
clements like r*sin 8A¢ ABAr which compose a pyramidal
solid, having its vertex at the centre of the sphere, and for its
base the curvilinear clement of spherical surface, which is

denoted by a’sin f Ad A6,
Integrate next with respeet to 6; we have - O
. AN\
Jsinﬂdf?:*cosﬁ; \
the limits of @ are 0 and g, thus .mj\g'.

V:f% dg. W

W

Iu thus integrating with respect™0” 8, we collect all the
www.dbraulibrary. org.in ;3 i

pyramids similar to %sin SA@M which form a wedge-

shaped slice of the solid cqn}jm':ﬁled between the two planes
through the fixed straight line corresponding to ¢ and ¢p+Ad.

Lastly, integrate,\ﬁgh respect to ¢ from 0 to :; thus
N i

N\
In this exsmple the Integrations may be performed in any
order, %”d}the student should examine and illustrate them.

EDE} A right cone has its vertex on the surface of a

sphere, and its axis coincident with the dimmeter of the

““sphere passing through that point: find the volume com-
Nnon to the cone and the sphere.

Let @ be the radius of the sphere; a the semi-vertical
angle of the eone, ¥ the required volume, then the polar

equation to the sphere with the vertex of the cone as origin
is r=2q cos 8. Therefore

V—fzﬂfmfmwwﬁ . ed dﬁd
- 0J0s0 s ¢ T ar

o
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210. The curve r=a{l+cos 8) revolves round the ini-
tial straight line, findl the volume of the solid generated.

Here the required volume °

T 2r rafi+cosé} i
={ [ [ 7% sin 8 df d dr

Jode Jo A
¢\A

27? f (1 + cos 8)*sind do, . \\,

s O
Lt will be found that this = 27 o
o

. O\
EXAMPI *@\sw\ﬂbra ulibrary org.in

1. If the curve (@ —4a)= &é@—.ia) revolve round the
axis of o, the volume gem rated from =0 to 2= 3¢
is T (la —161log 2}
\

A cycloid rey &w round the tangent at the verte\:
shew that \he volume generated by the curve is 7',

[

3. A cycloid, revolves round its base: shew that the
volQme generated by the curve is far'

4, ’Q\e curve 3 (2 —x) = 2° revolves round its asymp-
tote : shew that the velume generated is 2n'a’

.

’.
’o

W\ 5! The curve @y’ = 4a’ (20 — ) revolves round is asvmp4

\/

tote: shew that the volume generated is 47"

6. Find the volume of the closed portion of the solid
generated by the revolution of the curve (iff — 5)° = &

round the axis of y.
256 7b®
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7. Express the volume of a frustum of a sphere in terms of
its height and the radii of its ends. o

Besult, %ﬁ A+ 3+ 2.0}
"™\
8. If the curve 3" =2me + na® revolve round the axis of s,
find the volume of any frustum; and shew that, ity

may be expressed either by £\
Th g 2 z . Tk .‘:f; N
o B+ ¢~ dnl?) or by h («,» +ﬁ) Q

where & is the altitude of the frustum .ar?i\b, o, T ate
the radii of its two ends and middle gagtion. Deduce
expressions for the volume of a copghahd sphereid.

9. Find by integration the volumgfiﬁéluded between a
right cone whose vertical angle”is 60°, and a sphere
w‘“’w‘db"ﬁﬁgl’{r@ﬁ’ﬁcﬁ‘ﬁ% touching it alofig a circle.

A\ ) Result, Eg—n

10. If a paraboloid haye its vertex in the base, and axis in

the surface of alcylinder, the eylinder will bo divided

into parts el are as 3 to 5 by the surface of the

paraboloid ; the altitude and diameter of the base 9f

the cylinder and the latus rectum of the paraboloid
beinghall ‘equal.

1. A p@r}ﬁoloid" of revolutien and a right cone have the

ame base, axis, and vertex, and a spherc is described

L wpon this axis as diameter : shew that the volume in-
% “tercepted between the paraboloid and cone bears the

()  same ratio to the volume of the sphere that the latus |
\; rectum of the parabola bears to the diameter of the
‘sphere. :

12. Find the whole volume of the solid bounded by the
surface of which the equation is :

@ ¥ 2
(?,2 + b:a + G" =1

Srabe
FResult. %——
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13. Find the whole volume of the solid bounded by the
surface of which the equation is
@+ y* + ) = 27 dPaye.
Result. -g-a“.

14. Find the volume of the solid formed by the revolution ,
of the curve (o*+ 5*)° = &’ + b"y” round the axis of &,\.J)
supposing « greater than b. Shew what the resﬁlﬁ
becomes when a= 4.

R . . wh? - a-l—«ffa —b")
Result. g(Qa +$b)a+2"/(a,,_6,)lg "

15, Determine the volume of the solid gener&ted by the re-
volution of the curve (&®+ ¢")° = a,a&\*l-'b round the
axis of g, supposing a greater than b. Shew what
the result becom es when amfﬁz;sfvd braulibr ary org:in

Result. —(2b==+3a)z,+»w( g an” «/Caa—b”)

16. "Find the volume of the? sohd formed by the revolution
of the curve (3* + af) =a* (¢ — 3" round the axis of «.

{.ﬁ log (1 -+ v/2) _th

17. A paraboloid of revolution has its axis coincident with
a diamster of a sphere, and its vertex ouatside the
sphers’ find the volume of the portion of the sphere
cutside the paraboloid.

O Result.
A\

A\ s
,:f\ Result. %, where % is the distance of the two
“\ planes in which the curves of intersection of the sur-
\ ) faces are situated.
18. Find the volume cut off from the surface

N

zf yﬂ

by a plane pf:,rallel to that of (gr, z) at a dlsta.nce a
from it. Llesult.  ma® f (be).
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19. A quadrant of an ellipse revolves round a tangent at
the end of the minor axis of the cllipse: shew that
the volume included by the surface formed by the

curve 18
: A
e\
20: Find the volume enclosed by the surfaces definéd) by
the equations P §

S
a?+yt=cs, oF+y’=az, zzQ;;."

illustrating by figures the progress of NhE summation.
- \.; a +

\ ‘:\ Result. kol

32
w2d dbkhuliblper . crlgded surface, d8 axt clement of S about a
point P at a distance s~from a fixed point O, and
. ¢ the angle which thelhormal at P drawn inwards
makes with the rahus vector OP, shew that the

volume containedrhy the surface

: "‘\\1
\'\‘..}= 3 [fr cos ¢ &S,

v
N\

the Sumﬁ'lﬁtion being cxtended over the whole sur-
face.(\N

{'\,Takiug the centre of an ellipsoid as the point 0,
) '§ajf)p1_y this formula to find its volume, interpreting geo-
w * mebrically the steps of the integration.

ot
' \M\Q“Z Find the value of ff fxﬂ da dy dz over the volume of av
’ il
ellipsoid, Result, 4_771%&;,

23.  Determine the limits of integration in order to obtain
the volume contained between the planc of (x, ¥) and
the surface whose equation is

Ax*-+ Bay + Oy —~ Da— F=0,
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24. State the limits of the integration to be used in apply-
ing the formula fU-da: dy dz to find the volume of a

closed surface of the second order whose equation is
axt + byt + 2 + a'yz + b'xza+ coy=1.

25. Statc between what limits thie integrations in O\

ff diw dy da . \\

must be performed, in order to obtain ,the® volume
contained between the conical surface .N]Osc equa-
tion is z=a — /(&' + %), and the pla,nes ‘whose equa-
tions are =2 and #=0; and ﬁn(i sthe volume by

this or by any other method. & ™ Result., 2—;

www»dbrauhbrary org.in
26. State between what limits, bhe integrations must be
taken in order to find ’she» volume of the solid con-
tained between the ti\re surfaces ¢z *maf"+ny and

2= ax+ by ; and shew that the volume is -8_ when

..1?\_ =a=b=1

27. A cavity iy qu ]arcre enough to allow of the complste
revolution of a clrcular dise of radius ¢, whose centre
desqribes™a cirele of the same radius ¢, while the plane
of the disc is constantly parallel to a fixed plane, and

e&:endwular to that of the circle in which its centre

'§moves Shew that the volume of the cavity is

W\ 2P
0" "' - L) 8 .
AN 5 (37 +8)
’”\ w4
\/ 28. Find the volume of the cono-cuneus determined by
v o'y
F + P =c 3
which is contained bctween the planes z=0 aJld
&=, Result, 7—:22—“.

-y
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29. The axis of a right cone coincides with a generating
line of a cylinder; the diameter of both cone and
cylinder 1s equal to the common altitude:; find the
surface and volume of each part into which the cone
ia divided by the-cylinder. O\

N s

Results. i O\
Surfaces, 4 /5E Y15 a* and Mﬂl_o uz,’*\'
6 G N
Vlumes, STH VB8 g 04 (0

where ¢ is the radius of the base BfNthe cone or .
cylinder. PN

80. A conoid is generated by a striught line which passes

dbrifqugh the axis of z and is pérpendicular to it.  Two

WWCATEEctibns’ aré tade by patadel planes, both planes

being parallel to the axis of z Shew that the

~ volume of the conoidincluded between the planes is

equal to the produet of the distance of the plancs info

" half the sum of theé*areas of the sections made by the

3

planes, \\‘,
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CHAPTER IX. A
. ¢ \
DIFFERENTIATION OF AN INTEGRAL WITH RESPECT TO @Y‘
QUANTITY WHICH IT MAY INVOLVE % \J
7%
N\ %

211. It is sometimes necessary to differen af€ an inte-
gral with respect to some quantity which i#Gnvolves; this
question we shall now consider.

Requned the dlﬁ'erenual coefﬁme%& ¢ (z) de with

db lfl
respect to b, supposing ¢ () not to eontain o ral@" &7 be

independent of 4.

Let ’ ==f 4 @) des

suppese b changed mf\ b+Ab in consequence of which
% becomes w+ Au; t,hhs

b+ Ak
\a %A Au= [ " ¢ (@) da;
therefore .\;j,? Au= f " () dec — f ¢ () dw

& [ @) de

\”\~' Now, by Art. 40,

f 8 o () dio= b b (b -+ OAB),
where 8 is some proper fraction ; thus

‘A—'b—'ﬁ("*‘ﬁAb}c
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N\

3
) 2
/
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Let Ab and Ax diminish without limit; thus
du
=%

212. Similarly, if we differcantiate » with respect to )

supposing ¢ (ir) not to contain @, and b to be independent’

of @, we obtain o\
du A
=~ (o). Q

&

A\ .
213. Suppose ¢ ()} to contain a quanfity ¢, and let 1t

b
be required to find the differential cogffigient of [ ¢ (@) dz.

N1
with respect, to ¢, supposing « and $rndependent of .

Instead of ¢ (z) it will be’pén”venient to write ¢ (%, ¢),
diorlialirghp osmiBnee of the quantity ¢ may be more cleariy
indicated ; denote the integral by w, thus
. ‘T:’;W v
U= x, ¢y .
L50P |
Buppose ¢ cﬁ‘s}mé'éd into ¢+ Ac, in conscquence of which
u becomes u -F'Au ; thus

PN\ T3
/ot Ay = ' & (2, ¢+ Ac) dz;
i"\:. B ﬂ‘

W4

tjx&éfore Ay = J

bqﬁ (#, ¢+ Ac) da — j ’}b (z, ¢) di

VS

:..\’:; &
o/ ]
=[ [z, c+ Ac) — P (v, ¢)} d;
£
Au (@ e+ Ad—dlxc) .
thus As ..f“ A .,

Now by the nature of a differential coefficient we have

Pl ctdo)—d(x, ) 4 Iw,c
Ac 0=_¢éc )+P,
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where p is a quantity which diminishes without Limit when
Ac does so.  Thus we have

Au_ fbdd{w ) , [P
Ac -—fa o dz +‘Lp dz.

When Ac is diminished indefinitely, the second integral
vanishes; for it is not greater than (b —a) ', where p. s
the greatest value p can have, and p' ultimately vanishes:
Hence proceeding to the limit, we have Dl

S
™

du  rédd (w ¢) K7,
i L R

214. It should be noticed that the preceding Article sup-
~ poses that neither @ nor & is infinite ; if; ‘for example, & were
" infinite, we could not assert that (b -,—"cbp’ would necessarily

vanish in the limit, (it dbraulibrary.org.in

215. We have shewn thell:{i;i ‘Art. 213 that
| d N | bdeh (a, ¢
oo ey, ... .

A\ o . ,
We will poin, gt ja useful application of this equation.
Suppose that yffm>c) is the function of which ¢z, c) is
the differential(Coeflicicnt with respect to , and that x (@, ¢)

is the funchigh’of which d""‘f%) is the differential coefficient
with rgsf};:}t to #; thus (1) may be written

k0 dpla,

QN ‘P;,C Z ‘Péj Ve 5, ) =3 @ ) @),
N
tlet us suppose that b does mot occur in ¢ (z, ¢), and that
@ 15 also independent of b; then (2) may be written

ﬁ‘f-&%ﬁ+ Cm=x(B 6) eenrrorverinnnn(3),

where C denotes terms which are independent of &, that
Is, arc constant with respect to b. Hence as b may have

T. L. C, 13
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any vatuc we please in (3), we may replace b by and
write

(2 0) = d_«p_(% G el (4).

This equation may be applied to find y (z, ¢); as the
constant may be introduced if required, we may dispehssy
with writing it, and put (4) in the form 'S N

A, ) _ij (o o) e D
J e d,c—-dc bz, ¢ di X

L 3

W,
7'\
Ny

N

7

. 1
For example, let ¢ (i, ¢} = g

; themaw
4

www.dbraulibrary . ofg.i : dm:‘:’}l .
JBt 9 e[ s en
. d /1l “:{iv L ) .
1-}!113 d_(; (E tan (_,: ) =\ (jfé (1+ {}2$2 d.x
x“‘\’\ 2
K =- f L
\ N - (14 &y
e o e sl
- Thus,from knowing the value of fﬁ‘%ﬂ we are abie
dcdt\@’é}%}f differentiation the value of the more COmPlex
N\ o
tderal f L
L e
M\"‘,’

\/ . B L
916. Required-the ditferential coefficient of I‘ P, o) de

@
with respect to ¢ when both 4 and @ are functions of ¢
Denote - the integral by u; then-% consists of three terms,
c -
one arising from the fact that ¢ (=, ) contains ¢, one from
the  fact that -b containg e, and one from the fact that @
contains &~ S . - :
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Hence by the preceding Articles,

du_ f4dp(w ¢y,  dudb  duda
% f G Tt Gt &

d:;b dx
e AT IO STCET S
&\

.\\ v

217. With the suppositions of the preceding ‘lrtlcle we

may proceed to find (éif By differentiating with reapect toe
N\

the termJ- qu G) dx we obtaln

\¥;
o\

dq’a{z,c)d tﬁb{;db %5'(0, c) da
] det T de dggcww_cﬂg,];,aullla@ary org.in

,o

E ]
Y

Krom the uther terms in S ET.M, obtain by differentiation

drb i\b <) dp b, ¢) db
"\— ot Y
00,9 5 r’-:;“’ 7 (dc) * The de

‘\d ‘o de e, ) (d_as de («, ¢} da
dc) ~

*‘if’( " da de  do”
:\” 3 B I2
e du [ ' (=, o) da
A & det /. de*
R\
L 4B o) pdb ¢ (b, ¢) db
{ \ gk Y
\“ +d e )d* b (dc)+2 de  de
i _ Pa_ dd (a, 0 @) L d8(0,¢) da
¢ {a, ) da (dc Tde de

3
Similarly g{,—lt- may be found and higher differential co-

cfficlents of w if required,
13—2
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218, The tollowing geometrical illustratiou iy be given
of Art. 216,

¥

| O\
A ¢
P ¢\
’ P N o
) P P O
- i\:‘
o 3
o Pt D
i 3
A— il -f" \Z
RN
{ &
: 1 ! _ r_..‘.g.—_;\ ———X
rww. dbraulibry.org.in ¥ ¥ NONW

1
=R

Let y= ¢ (2, ¢) be the ‘Q‘(‘fl;gtiou to the curve APQ, and
#=1e(xz, c+ Ac) the equa@gih to the curve 4" PO

Let O q, ON=8,
&-
\u?mf- = Ag, TN = Ab.

Then « de&a\étes the area PMNQ, and u + Au denotes the
arca P'W' N, Hence

'\ I
..\{, Ay = _P':pg Qr + Qi\rj_ ”9‘ ——PJ‘[JI g2l

il Auw_PpeQq QNNgq PMMp
."\“:' Ae - Ar - AC AC

X ,
\/ It may easily be seen that the limit of the first term is

the Timit of f 2d(a,c tA;) =@ 9) g, that the limit of the
a 4

second term is the limit of ¢ (5, ) i_z?, and that the imit
G

of the third term is the limit of ¢ (u, ¢) % . This gives the
¢
result of Arct. 216,
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219. Haewmple. Find a curve such that the area between
the curve, the axis of z, and any ordinate, shall bear a con-
stant ratio to the rectangle contained by that ordinate and
the corresponding abseissa.

Suppose ¢ (o) the ordinate of the curve to the abscissa w;
then [ or')(.r) dx expresses the arca between the curve, the, \

™\
nxis ot #, and the ordinate ¢ (¢} : hence by SLlppOE:lt.lOIl‘ AV e
must have N

f:qs () dw = @—@ . ~\

whore n is some congtaut. This is to held fQM,ll \ea,lueq of ¢}
hence we may differentiate with respect #0°p; thus

qb fﬂ) = (ﬁ?c) GQ" t’c‘)cxibl -atulibrary org.in
therefore o' (e)=(n 3 Ij(ﬁ, (),
_ ¢ (c) fm;‘ir
and ¢ (c) _L.‘_

By integration log ¢¢(o; (")\ (n — 1} log e + constani;
thus \;5 ()= 4c™,

where 4 is sa\me Constant; thus we havo finally

::\’..: (i)( } A’w"‘“_l
v,vhich\t{@ei*mines the required curve.

”S.’>0 Find the form of ¢ (x), so that for all values of ¢

M\ S ,
9 - [es@rae
[[tg @rde

= o

By the supposition
| elp o=t (s @1da
A ig
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Differentiate with respect to ¢; thus

el P =119 (0 do+ S ip @

thus o (1 - 1) (3 ()7 =21 (¢ o) de.
n o A L
Differentiate again with respeet to ¢ ‘ \\\}
1 1% ., [ ()4
thus (1 - pEr+z (1=, le@e ="
9 o T\
hence (1 - ;) b {c)+ 2 (1 - ;1) & () <D

therefor (L ©_ _2-n ls\\J
pretore A OREICESYON

N/

ww v dlpgeghibiar ythog. in

2 _als
log ¢ (c) = 9 (n?“jjfog ¢+ constand;
™y oo n

therofore % (5)“: AT,

where A 18 some cgif.,c}}dnt; thus we have finally
N

Z-n
A\ Qb (_x\J — sz{n—ll_
W i

This ie\He solution of a problem in Analytical Staties,
which “m}f'be enunciated thus. The distance of the centre
of g@&iﬁy of a segment of a solid of revolution from the

Y. 1 .
wrtex is always ith part of the hoight of the segment; find
‘\w\::\,tfle generating carve Tho required eqrtion sy = ¢ (‘@)'

_ *¢ () d
221.  Find the form of ¢ () so that the integral [0 m

[\
may be independent of ¢, supposing that ¢ (@) 18 independent

of ¢
Denote the integral by w, and suppose & = ¢2; thus

"= [ ‘¢ (x) dw _ [1 Ve () dz
Jove~a) Jy »\/(1—-2’) )
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Sinece « is to be independent of ¢, the differential coefti-
clent of 4 with respect to ¢ must vanish. Now

ﬂr’) (GZ)
du f + e ol (o) dz = '°¢(x)+2$¢ (@) 4
de

V{l —z) o Zey{o=x)

This last integral then must vanish whatever ¢ may Je)
If ¢ (x) were not ndependent of ¢, this would not necesgnaily
require that ¢ (:c) + 2r¢ (@) should always vanish; for Bach

3
an integral as J COb‘E‘ d & venishes whatever ¢ may })e But

0

¢ (@) + 2’ (z) must vanish since ¢ (x) Is supposed inde-
pendent of e.  For suppose that ¢ (&) 4 2xplf@) 1s not ¢ always
zero; then as & increases from O the mgn\}}f ¢ (z} + 2u¢’ (@)
will remain unchanged through somelnterval, which does

not depend on ¢, say until @ = a, Thusxthc integral
W dbrauhbrary org.in

RICEER O
Lo Ze «/ Cﬂ» @)

cannot vanish, since every® Sltment is of the same mgn
Hence we see that ¢ (B4 224" () must be zero,

ﬁ@__L

Therefs
wrefore \\ 6@ 9
therefore O logg(e)=— % log @ + constant,
</
therefore \ ) ¢ (v} = i

wherM is some constant,

lhts is the solution of & problem in Dynamics, which may

bc ‘enunciated thus. Find & curve, such that the time of

™\ ﬁllmg down an arc of the curve from any point {o the lowest

\ pomt may be the same. If s denote thc arc of the curve

meagureld from the lowest point, = the vertical abscissa of
the extremity of s, then we have

ds
dz

so that the curve is a eycloid {Art. 72).

¢ () a,nd §=24 sz,
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MISCELLANEQUS EXAMPLES,

1. If the straight line SP, I, P, mcet three successive revo-
lutions of an equiangular spiral, whose cquation is
r=af, at the points P, P,, P,, find the area included Y

1! ar

between P £, I P, and the twoeurve lines 7, F, P;Es\ _

]. - &\ 2

Reswls. 7o (BRI

2. Find the area of the curve g — azy’ + 2 = 0.4 -

%7 ? a
Rosi, TONZ,
N J 16
3. Find the area of the curve & + gjf?%.fLQ {ay)"™, where n i
is a posttive integer. SV

. AN P, .
tesult. If n 1s an even infegdr 5 ; i m iy an odd

ww.dbraulibrary.org.in . 2n

?( integer @n O
Jg n . "\.:;

4. A string the lengih of whicl is equal to the perimeter
of an oval ig.wound completely round the_-. oval, a_nd
an involuteis.formed by unwinding the string, begin-
ning at gm(\)oint: shew that when the length of the

¥ involyté ¥ 2 maximum or a minimum the length of
thepgtting is equal to the perimeter of the 01_1"01(? of
cprvature at the point from which the unwinding

rhéging,

5.‘~'§ind the portion of the cylinder a® + ¢ — v = 0 iuter-
3% cepted between the planes

e \

\‘\f ezt dy+oz=0 and a'w+by+cz=0.
’ -;;-(a’——a)?f
% .

Lesult,

6. Find the volume of the solid bounded by the pa.ra:
boloid 4*+ 2= 4a{z+a) and the sphere @'+ "+ =1,
supposing e greater than a,

i iy
Hesult, Zmra (62 — %) . i’
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CHAPTER X.

ELLIPTI¢ INTEGRALS. o
%o
NS *
222. THE integrals {\7@«%, f\{(l - cfairfﬂ) as,

d L.
/ (i Fasnd) JI s 8’ are ca]led'"‘flhptw Jung-
tions or elliptic wnfegrals of the first, second,\and third order

and

-respectively; the first is denoted by F(6.8), the sccond by

E (¢, 8), and the third by 1I (¢, @, 6}. {The integrals are all
supposed to be taken between the liwits 0 and 8,80 that they
varish when @ vanishes. @ is callad, the-sunplifedeof ifhe
function, The constant ¢ is suppoesed less than unity; it is
called the modulus of the function. The constant e, which
accurs in the function of the “third order, is called the para-
meter. When the integrals are taken between the limits 0

and g, they are cal}e&(compiete functions; that is, the ampli-

tude of a comphe%}unction is g

223, Mt second clliptic integral expresses the -length of
a portiofinof the arc of an ellipse measured from the end of
the quinor axis, the excentricity of the ellipse being the
mf}d&ﬂ of the function. From this circumstance, and from
the fact that the three integrals are connected by remark-

“able properties, the name elliptic integrals has been de-
y “Tived.

224. The theory of elliptic integrals and the investiga-
tions to which it has led constitute a part of the Integral
Calculus of great extent and importance, to which much
attention has been recently devoted. We shall merely give
a few of the simpler results. For further information the
student is referred to the elementary treatise on the subject
by Professor Cayley.
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225, If @ and ¢ are connccted by the equation
Fle, )+ Flo, d)=Fle p),
where g is a constant ; then will

cos & cos ¢ — sin B sin 4/ (1 — ¢* sin® u) = cos .

7N\

\‘

Consider @ and ¢ as fuuctions of a ncw variable Z, apﬂ
differentiate the given eqnation; thus Dl
'S s
1 d9 1 dqb .10,

NI —csin’ 0 di )\/(1—0 sin o) a?t

Now as £ i3 a new arbitrary variable, we, ale at ]1bert-y to

assume ~’\ o
4 \“'
%—-V’(l—c sm 3)
w.dbraulibr ar?]/ org.in o\ ¢
thus from the equatlon (1} AN

%
NS
e

?Et_ = —{/5(‘1“— ¢*sin ¢).

Q
Square these t\yo,e@@lbions and differentiate; thus

d*4 N 4’ 2
dtz=—c sin £ cos &, E:‘?:—c sin ¢ cos ¢ ;
k-3
ther cfore '\” s ((3{: $)__ f— (sin 26 + sin 2¢).
th 9+¢ ¥ and 8 —¢=y; thus
) ;"\;' dr &y e
\\ dt;u—c sin cos , qE = sin y cos .
dr d a8y rdd? 2 .
Also W d)c{ (dt) —(d—‘fJ = —¢"sim 80y ;
&y @y
therefore ¢

af’ =rot -—-—-d =cpt
Tay K Ty Y

di dt dt dt
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therefore o .
&y dy dj)'_é"ﬁ.- 3
7 (log dt) 7 log sin by (log 7 = a logsinyr;
therefore log %ﬁr =log sin y + conatant, e
B ~\'
1 <N}
therefore %\i‘-‘ =dsiny \3\ “
................ A (2),
and similarly d_)g = Bsin ‘ X 7.\ .
' dt J Qg
SO
whore 4 and B are constants. ’
Henee A sin chg = Bsin 1{;%?\ :
therefore Acosy= wa hgaulibrary orgin

Now from ihe original gnen e‘quamuu we see that if ¢ =0
F (o) F (0.1);
therefore than : —@\acnd X=Y=p;
thus from (3) < \(‘/I Bycosp= 0,
thus 4 cos (€ ¢) = Beos (§+ ¢) + (4 - B} cos "
{lwerefore :‘\’

(1—"Bk({(\)§900b(}5+(r1+_8) sin @ sin ¢ = (A — B} cos ... (4},

111 @) put for zf_w,b its value /(1 — ¢* §In° ) — /(1 — ¢"sin’ @),
<\ ';hd fur c;t its value /(1 — *sin®8) + \{(1 —¢?sin’ ¢}, and then
g suppose ¢ = 0; thus
WA -cgin®p) —1=dsing,
and V{1 —¢'sin® ) + 1 = Bsin .
Substitute for A — B and 4 + Bin (4);
thus  cos @ cos ¢ — sin @ sin ¢p /(1 — &7 sin® p) = cos .
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226, The relation just fonnd nwy he put in a different
form. Clear the equation of radicals; tins

{cos @ eos ¢ — cos p)? = (1 — ¢® 5in’ ) sin® O sin®

therefore O
- N4
cos” 0+ cos” ¢+ ook’ — Zeos Beos o cos p \\\
. N .
=1—¢*sin’ psin* Gsin’ ¢

N
Add eos® ¢ cos” p to both sides and transpose; 1;-11111.?3

{cos @ — cos ¢ cos w)® N _
=1 - c0os® — cos® p + cos® b cos® w A" o sin’ F sin’ ¢ '
=sin® ¢ sin’p (1 —e’sin® 8) ; NN v

N/

wrw .diirerdfbrery oo cos ¢ cos p +)s,@f1’¢§ sin u /(1 — ¢*sin® ).

‘. . N . .
The positive sign of thewradical is taken, because when
=0, we must have ¢ =jo)

297. We shall.do¥ shew how an elliptic function O.f the
first order may b@a&nuectcd with another having a different
modulus, la\

N\

Let (678} denote the function; assume

> sin 2¢
\“ — .
.xw’ fan 6 ¢+ cos 2¢°
R\ ]
therefore _ig_ df _2(1+¢ c08 2‘3’) ,
\”'\)w’ cos" 0ddp (¢ + cos 2¢)
i df  2(14ccos2¢)
therefore BT+ %5991
2 2
And l—c’singezl__.ﬁ]%_

_ 1+ 26008 2¢ + o' cos* 2¢

T+ %0052 76
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thercfore
"_ df _]'2(1+ccos2¢) V({14 2 cos 24+ &) b
L J{l—c"sin*(?}_*. 1+ 2ccos2¢+c*’ 1-1-000329’1

.

4

[ £ Co8 ? j
(1+2 2¢+s) 1+c\/ (1+)2m,¢}

No coustant is added, because ¢ vanishes with Q Thus

e, 19)—-—F{c @), where ,\ﬂ\'j
. o _ sndd
1—(T—+c.za;nd ta:rlﬂ-—m.

The last relation may be written thu*sl,
W, dbraulibrary. org.in

esin @ = ‘un,(‘2¢ &).
We may notice that ¢, s grsa.tér ‘than ¢, for
el \} N4
m\cﬁ o (1+e)’

and gince ¢ is 163\&]32%{1 unity, 4 is greater thau ¢ (1+¢)™

Ir¢_— Lhené‘ a; thus

;\:\M___ o T o _ ™
\w, 1+C}r(cl, )—F(c,wr)-—2F(c, 7.

N 2)‘% We will gwe one more proposmon in this subject,

A\ by establishing a relation among Elliptic Functions of the

\/ second order, analogous to that proved in Art. 225 for func-
tions of the first order,

It cos fcos p— sin @ sin ¢ /(I — ¢’ sin’ p) = cos p,
then will
Elc, ) + E{c, ¢)— E (¢, p) = £sin fsin dsin p.
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By virtue of the yiven equation counecting the amplitudes,
¢ is a function of @ thus we ny assume

Life, O) + & (e, ¢) — £ (¢, p) =7 (6).

Differentiate; thus L
F0) =y {1l =i’ ) + il = c*sin §) 55 d‘i’ \\'~\
N/

_cos8 —cos b eos p L cosd $—cosfeospdd

BN ¢ 811 sin @sing a’{
(ﬁ\, Art, 226),

_ disin"0+ sin'g + 2cosf cosp ooqpk\ 1
e 2 sind sin $sin p

s‘o

oo GRrpu P Y- B8R + 2 cos B cos Qéos;a
:*'\L“{L cos® 1 4 ot sin® @ sin®  sin e

thus 76 =&l “‘i(f}n_?f’i? )
ad ;
\} |
Therefore, Ly mt@&l\atlon S
\, f(ﬁ‘;-w, sm@sm(‘bsmp |
No t{cﬁ}stant is added, because f(8) obviously vaul ishes

with Q\“
\ I} #=3 T the present result coincides with Fagnani’s Theo-
¢ \ rém demonstra.ted in Art. 92 this will be easily seen by the
/ 8id of some developments Whlch we will now give. :

In Art. 92 we have the relation

esemﬁwre — (.'1‘}2 + .‘L‘(?J + a‘: 0,
@ cos :
where =" 6 oo @ cog & ,

Vi< eumng)’ VA= s’ o)
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heoer we obtain .
e’ cos’ 8 cos” §' — cos’ @ (1 — é'sin® &) — cos® §'(1 — &’ sin’ §)
+(1—¢sin*d)(1 - Psin*§) =03
that is e*sin® @sin’d + ¢ (1 — sin®*f — sin® @ —sin*Fsin® ) . O\

+ sin®*f 4 sin’ @ —1 =0, O\
that is N )
. . \
¢ (' = 1) sin® G sin®6 + (¢ ~ 1) (1 ~ sin® § ~ sin® @) =70,
that is fsint Osin’ @ + 1 — sin® 6 — sin® @' = >

L%

A\
This relation may be put in the followingJapms :
{{— &%) sin’f sin® & = cos® J 80800,

ERPI L e
Tl-¢ Sﬁi\%ﬂu.’dbraulibl'ary.org.in
g ot @
sin’ @ &

- ];}%;ea sin® g

*

O

N

N
Y

MISCTEANEOUS EXAMPLES.

: O —
l. Find the; wmle volume of the solid bounded by the
surfac;e.;uf? which the equation is
N\ S . :
W 2axy
e/ T___ = —_ 2
"\‘?\ & _v’(-ﬁ-i-y’) (-@'g‘*‘?i’) .
wa . . . .
“z'léi}suﬂt. 5 Supposing the radical restricted to the posi-
tive sign. '

2. Find the whole volume of the solid bounded by the sur-
face of which the equation is

v G @G-

.R_esu.-!t. 4ralo

35
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3. Prove that the volume of that portion of the solid
hounded by the surface whose equation is

a'atayt =z (o’ — 2%,

which lies on the positive side of the plane of ay 18 & 3

Bmrat
21 * o
. d8 - ne

4, Find the value of gl where dS denotes t-hfe,,glement

of the surface of a sphere, and 7 the disfdhte of this

element from a fixed point withoutsthovsphere; the

integration being extended over tha\whole surface of

the sphere. AN

Result. Zna ]'---——_— - 1\\ _J . where a is the
g e ay e

www.dbraul ibganyotg ithe sphere, and\ ¢ the distance of the fixed

point from the centre pf she sphere.

N

5. A cylinder is constrdbed on a single loop of the curve
=g cos n haying its generating lines perpendicular
to the plane,of\this curve ; determine the area of th‘i
portion \tihé surface of the sphere @ +3'+2 =@
which ¢he® cylinder intercepts; determine also the
volumé\of the cylinder which the sphere intercepts. -
e o 4a® 4a’ ( 2)
531\466.2~ Area = (Z - 1) s volume = S (2 gl
(i:(%‘ind the volume of the solid gencrated by the re\;olu-
3" tion of the closed part of the curve 2’ — Saxy-+¥ =

~O° round the straight line z+y = 0. 5
) 7 a
N\ Result. m .

7. Tf the axes of two equal circular cylinders of radius @
intersect at an angle 3, the volume comrnon to both 18
16 _%_ . and the surface of each intercepted by the
3 sing
2

. 8a
other 18 —.

sin A

e e o g
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8. The centre of a variable circle moves along the arc of
a fixed circle; its plane is normal to the fixed circle,
“and its radiug equal to the distance of its centre from
a fixed diameter: find the volume generated; and if
the solid so formed revolve round the fixed diameter,
shew that the volume swept through is to the volume
of the solid as 5 is to 2, (\)

Y

Y. The centre of a regular hexagon moves along a diameter

of a given circle of radius g, the plane of thedfiexagon

being perpendicular to this diameter, and ity ‘magni-

tude varying in such a manner that ong-ef its diago-

nals always coincides with a chord of $heéircle : shew

that the volume of the solid geperated is 24/3d%

Shew also that the surface of thesdglid is

a’ (27 + 3 /NS

vt dbraulibrary.org.in

10. Prove that N
[ i dz 9 —: E Fle Zr) where ¢ = i
W (2az— @) (@ — )" 3a ( 2/’ R

11, Shew that therdength of an arc of the lemniscate
¥ = ¢* cos 3¢ easured from the vertex can be ex-
pressed ds an elliptic integral of the first kind,

12. £ and @%te any two points on a lemniscate of which 4
is gk’ vertex, and O is the pole. Find the relation
bstween the vectorial angles of Pand @ in order that

\'ﬁhe arcs 4P and QO may be equal.

oy
&

Ny Hesult, Cos AOP cos AQQ = %2
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CHAPTER XU O\
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CHANGE OF TIE VARIABLES IN A MULTIPLE lXT?JG}%AL.

299, WE have seen in Art 62 that the’d"o‘ghj\]é integral
brE rB b .
f [ ¢ (2, y) dz dy is equal to ’ { ¢ (=, ,@ﬂy Jx when the

Limits are constant, that is, & change in$he grder of integra

0 ‘ﬂfE{ﬁf@é@Hﬁ)iﬁhange in the limitéfer the two integrations.
But when the limits of the first jnﬁegra.t.ion are functions of
the other variable, this statementifio longer holds, as we have
seen in several examples in thé¥eventh and eighth Chapters.
We give here a few additienal examples.

230, Change thg'quﬁer of integration in i

ey -2 g
oN . ¢y dedy ;
N 0 ;

&
N Y|
s"\$~
’\\..l Bl
R\ "

AN ;
S\ :

|
| \

(J 37 a =

The limits of the integration with respect to y here a0
y=0 and y=y(—a"); that is, we may consides the
mntegral extending from the axis of @ to the poundary of 2

Bl
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circle, having its centre at the origin, and radius equal to a.
Then the integration with respect fo @ extends from the axis

of y to the extreme point 4 of the quadrant. Thus if we
consider 2= ¢ (v, y) as the cquation to a surface, the above
double integral represents the volume of that solid which s
contained between the surface, the plane of (z, y), and a "\
straight line moving perpendicularly to this plane round the™y
boundary O4ALPBO. <\

It is then obvious from the figurc that if the inte;g;fgmffon
with respect to = is performed firs, the limits willsbe 22 =0
and @ = 4/(a’~ "), and then the limits for y will be y=10
and i =a. Thus the transformed integral is )

a [ viaf g% \
[ o [ , S@ydy df >
’:élbraulibl‘ary,OL‘g.ln

231, Change the order of inte\g}’r‘ﬂﬁon in

a\

[ i / 2acos sqs v(i::’ :{5};? :w o

ERURS ]

Let &4 =2q, and describe a semicircle on 04 as dia-
meter, Let POX=4¢, then OP=2acos 6. Thus the double
integral ‘may be considered as the limit of a summation of
values of ¢ (, 8)r A@ Ar over all the area of the semicircle.
Hence when the order of integration is changed we must
wtegrate for 8 from 0 to cas™ ;2%, aud for » from 0 to 2w

Li-—2
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Thus the teanstormed Tdearal s

T

"‘.!u L i i

Ml,f: RO CARRILS lf}

L)

/‘232. Change the order of integratioe in

/ In_»,; "BIa*.r('b |:.r'_ y} f;-'f' d’y . \“\:
O
3 >

I3

vw.dbraulibravy .orgin

The int@&ﬁion for y is taken from y= %ﬁ to y = da — &
The gq{}a}{on y= %‘ belongs to a parabola OLD, and the

equation y=3a~x to a straight line BL(, which passes
thiough L, the extremity of the latus rectum of the parabola

O 'I'hus the integration may be considered ag extending over

J “the arca OLBSO. Now let the order of integration be
changed; we shall have to consider separately the space®
OLS and BLS. TFor the space OLS we must integrate
from &=0 to #=2y(ay), and then from y=0 to y=o
and for the space BLS we must integrate from o=0
=3¢ —y, and then from y =« to y=3a. Thus the lrans
formed integral is

[ 2\;’(&3;]' 8¢ fBa—
[ [ & {r, ) dy dae + ( “f y¢ (z, ) dy de.
0O Sa D




IN A MULTIPLE INTEGRAL, 213

233. Chavoge the order of integration in
= =

f I g eay

Here the integration with respect to 3 is taken from y=a\
to y=x (2 —=a). The equation y=a represeuts a strai%ht\'
line, and the equation y =& (2 —«) represents a parabola:

- The reader will find on examining a figurs, that the trans-

formed integral is N

)
#¥Z ?

1 ry 2
f J’ q") (ma _'f)') dy d:b'. ’.“'.\
6/ L= 8/(1-3) )

234, Change the order of iutcgmtjmx\ﬁ
fm [‘.l’+2a ( 3‘.;"\(;
@, Phdet dy.
S0t -ah) # w%ww,dbraulibrary.org.in
Here the lntegration with :'r"espect to y is taken from
y=aie"—a") to y=x+ 23" The equation g=,/(a"—2)
represents a circle, and thg*equation y =.x + 2a reprosents a
straight line. The redder will find on cxamining a figure,
that when the infegmation with respect to w is performed
first, the integral 4mst be separated into thiree portions; the
tratsformed inge is

[[° Mmgapdes [ ["¢ @y dyda
Fo I ity Ja lo ‘ _
Q\ ’ + f; Jﬂa $ (0,3) dy de

™
N

O '235. Change the order of integration in

\
2

& b%;
f f ¢ (2, y) dz dy.
00
Here the integration with respect to y is taken from y =0
to y= bTbE The equation y= 5-% represents an hyper-

bola; let BDE be this hyperbola, and let 04 =a. Then
the integration may be comsidered as cxtending over the
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OF THF ¥AUTARLES
.
1
) ) A\ \’
C T ‘__""\ l\“s
. >
T~/
o-— ——— _“‘___ o . ._5}\ At _—
@
space OBDA,

Lot the order of t,lm»rnhm ation be changed;
W d%?aﬁhﬁb]ﬂaﬁg)lﬂlcgﬁhvt to considen separarcly the spaces 0AD(
and DB,

¥or the spaco O‘sﬁf}

(" wo mnst lntegrate from
o=10 to x=r, and theu.,fimn g=0 10 y=

Tor the
J T i
space O we mus@nte”latc from @=10 to ==
and then fr OT{{ s’='§\ to y =1, Thus the transformed in-
ten- o\
ral is @
_&; ) b(l—y)
¢
f\ f D (@, y) dy da I- f & (=, 1) dy da.
A
\”\ b+n
. \{\:‘:‘ 286. Change t-he order of intesration in
\/)

b fe—ur .
f f ¢ (0,y) da dy,
0 ar
where A “i1n The transformed integral is
¥
A

j;\k[ d)(&,y}(‘l_j(l;-g.f j 95 (z,y) dy A
P
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237. Change the order of integration in

[ T

1, f:*.;b (v, 9, 2) de dy do.

The imtegration here may be considered to be extended )
throughout a pyramid, the bounding planes of which are(™
given by the equations e
{

=0 2=y, y=u, v=q. £\
N/

The integral may be transformed in different, wWeys, and

thus we obtain SN

"”“ Jaj y‘ﬁ (2, ¥, 2) dy da day \ ’
SOy A0 ¢
v g e RN
o . JU "/0 fy ?5(.‘3‘}‘, u, '4) d,(d?\d:b,
TR fe fa Wi wdbraulibrary . org.in
ar f { @ (e, y, Wz dy da,
Pl ‘.),’“
o .-'!u J 0 ’ sj‘?;{ﬁr’ Y, 2) duw dz dy,
A ]
o { "‘t\ I $ (@, y, 2) da dw dy.
LR

These braqst%r\mations may be verified by putting for
¢ (¢, y,2) soifer simple function, so that the integrals can
be actually’Obtained; for cxample, if we replace ¢ (w, y, 2)

f‘;rsl;é;....

~087 238, These examples will sufficiently illustrate the sub-
“\wlect; it is Impossible to lay down any simple rules for the
discovery of the limits of the transformed integral. It is not
absolutely necessary to draw fignres as we have dohe, for the
figures convey no information which could not be obtained by
reflection on the different values which the variables must
have, in crder to make the integration extend over the range
ndicated by the given limits. But the figures materially
assist, in arriving speedily and correctly at the result, '

El
by uuji;%"we find % as the value of any one of the six
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We now procead to tlue problom which is the wain object
of the present Chapter, namely, the e of the variables in
a multeple integral.  We bogin with the case of a doudle
integral.

239, The problem to be solvel is the thllowing, Required

. . WA
to transform the double iutegral J 117 dedy, where 'I(fls*.a

. N .
function of @ und 4, into another double integraliin which
the variables are w and o, the old and new vasinbles being
conneeted by the eguations LV

¢,] (3:, ¥, o, 'y) = U, (i)-_; (-‘t', Q Hy %,Ij =0 ... (1) .

We suppose that the original in Jg}‘ul is 1o be taken be-

tween known limits of y and «; ag&yk integrate with respect

fw'd}]c'}i]a;fhﬁ}iﬁ["’yt‘bleg‘]j{“its of # may befunctions of = Of comrse
Fi1

Wwhile integrating with respect 4 % we regard = as constant.

We first transform l;h,q{i}.létegm] with respect to y into an
integral with respect to »a " This is thevretically very simple;

from equations (1) eliginate u and obtain # as a function of

z and ¢, say e ;
&\ y=1 (:I,', ?}_\,' ..................... sanees (‘2)!
from which waget
<" dy =+ (z, ) dv,

\\‘hcra,{’f?ﬁi v) means the differential coefficient of (% ¢) -
with\zespect to v,
™\

S

“\,f}’z Substitute then for y and dy in [ Fdy, and we obtain

\ -
v f Vib' (@, v) dv, where F, is what ¥ becomes when we put

for y its value in V. Hence the original double integral
becomes

[[var @ vyaza.

. Thus we have removed v and taken v instead. As the
hnutmg values of Yy bet“"ae']:] whiah we had 01-ig—ina,11_y to
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integrate are known, we shall from (2) know the Imiting
values of », between which we ought to integrate. It will be

observed, that in finding j‘g from (2), we supposed  constant;

this we do beeause, as alveady remarked, when we integrate
the proposed expression with respect to # we must consider x
constant, K :\
The next step is to change the order of the above infegra~
tions with respect to x and v, that is, Lo perform the, \integra-
tion with respect to @ first,  This is a subject whieliwe have
alrcady cxamined ; all we have to do is to deterniine the new
timits properly. Thus, supposing this pointsetiled, we have
changed the original cxpression Into \
.\\,
- K¢
” VAl (z, o) deda\”

winwndbraulibrary.org.in

Tt remains to remove @ from this expression and replace it
by w. We proeeed precisely a3 before.  From equations (1)
climinate g, and obtain & ag & function of v and #, say

& — ’C (o, ) oo (3),
from which we get “\
. N\ de=1v" (v, u) du,

where x” (v piicans the differential coefficient of x (v, w)

/7 with 1'esp@{:{anto .

Swgﬁ%hte then for 2 and dz, and the double integral be-
coTnEE,

oy

AN ffV"a,V (., v) ¥ (v, w) dvdu,

"\,

\

\ where 77 15 what ¥, becomes when we put for  its value in

V.. Thus the double integral now contains only % and o,
since for the & which ocours in 4 (z, ) we suppose its value
substituted, namely, x (v, ). Moreover since the limits
between which the integration with respect to = was to be
taken have been already settled, we know the limits between
which the integration with respect to # must be taken.
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We have thus given the eomplets teearetical solution of
the problem ; it nmI) remadns toadd a practical method for
determining (e, miand o' (0, n}: to this we proceed.

We observe that + (x, @) or f.‘j-? is to be fiuud from equa-
p ¢

tions (1) by elimiuating w, considering .« constant; the folf
lowing is exactly cquiv alent : from {13 we have ReN

‘E_‘i)a ’__"._’f_i_f?‘ﬁ‘l it "J‘,'f' _0 elib, F_iff '_(1':4) efo dd)ﬂ
dy de " du dn + v " aﬂy dr o du fl?U..‘(IU

(?(f) dj 4+ d(f) dd} J:}f r?gf)e

e . 7o | BN
Eliminate i—t; thus < r‘-"(ﬁbl du = df{:\zﬁg @
el ‘,\ el
.dbraulibrary.org.in
s SOrR de, dy b, 16,

dy PR rhr dr
do dgf) f?(b,, dep, d(ﬁ)

“ohs dy (fr/ du

therefore

.

This then is an egu\mleut for W (z, v), supposing that after
tlie dlﬁ‘uentntm\f‘ 18 e perfmmed we put for y and & their
values in terms of 2 and o from (1).

du
elimipating y, regarding » as constant; the following s
anx\\b{y ‘equivalent? from (1) we have

\’ d¢1dxi‘d¢> dy  dg, de, dx d¢2dl_; 49, _ g
“\J  dz du deu du de du yda du

From these equations by eliminating % we find

q(#i Eg(i’ﬁ d¢1 dqsz

de_ du dy ~ dy du
dn dé, de, dp, dp,”

dJ de . da dy

A“&H-Q X (?J, u) or é is to be foum] from efiumhons 1) by

:0,

v
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This then Is an cquivalent for ¥ (v, w).

a6, a9, s, az,
M coos e o dv du du de
Ilhub (v oy (v u) = T5 08, 06,05,

dy de dz dy ERA
ITeuce the conciusion is that 4 r\:\”
d, do, _d, d¢, O
s dn  du
ey = ol . A N - 4 R
[[racay Y Tr—iag R
dy de  dx dy o\

where after the differentiations have been perfoimed, we must
substitule forez and y their values in termpgof w and v to be
found from (1); also the values of o and. st be substituted
in M wh(w.dbraulibrary.org.in

An important particalar casc 48ythat in which  and y are
given explicitly as functions of\& aud v; the equations (1)
A o N
then take the {orm N\

NI

T fi ) =N Yy 9) =0 3).
dg, s,

da _\ d_")’ 3 d&; H d‘ff E
and the transformeéd integral becomes
</
O fAF dF, df dfs
A\ E AN N i Sty E 3
x»\x'I\.\ ffr kdu el v du J dv dﬂ’
whu‘re%'“é must substitute for @ and y their values from
[CIRIN S
AN ‘
@ Thus we may write
S "idedy  ded
V des d =f 7 _ﬁ_g_J) »
Jf o dy J Kdu Js " T 7 Avdo i, (6).
. Again; suppose that u and » are given cxplicitly as fune-
tons of w and y; the equations {1) then take the form

v Fn, gy =0 v F (2, )=000 ... (7

Here (]‘;’1 _ 1\;\\?‘@1 -0
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Henee we obtain

- el s
‘ [ ({.f {ﬂy [/:{ﬁ: f{]"; ;/]f‘:! :‘{ I"; ]
o f)‘.f_}- :‘r",." n’)};

where we st substitute Sa o el « their values to B
obtained from (1)

N >
2 AN
rr] . . P :’\ . ’
s we may write /

- - Vdedu N :
vl o e N AL (8),
”l oy ﬂuﬁa di e " F0 ®

dedy iy rr":-'";}\

The formula in (43, (63, and (8} wh those which an
usually given ; they contain a simplu’@{uticm of the proposet
roblem in those cases where the ﬂi}mts of the new mtegm

" db%%ﬂ%r‘g‘}?.cﬂ%‘.’iiﬁusg _But‘in Sf)[]j‘};'.-E".‘Cilll_l‘]")l(‘?ﬁ Ehey dllfgc};lltgeq

cterminingthe Hinits of the giew integrations would be ver)

great, and 1o ensure a corpddd result it would be necessary

mstead of using these fapmtle, to carry on the process pre

cisely in the mauner slicated in the theory, by removin
oue of the old varialilds at 2 time.

AN
210. The@awmg Is an example.

A M b . .
Required tv transform ’ ’ Vil dy, having given
g 0

¢/
AN Yrtrz=u,  y=uwn
FI‘\QZ[:&BB given equations we have =y (L —%), y=uv;
O\ da dz d d;
‘.' o = — —— = — g - g = —'y =
A E;hus Tu 1—u, 7 U g =Y =
)" therefore dedy _ de dy

dady " dpdu— " A tww=u
Hence by cquation (6) of Art. 289, we have
arh
{ [ Videdy = Ulrrudv du ;
SRS .

but we have not determined the limits of the integrations WiJIEh
respect to w and v, so that the result is of littlo value. We
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will now solve this example by following the steps indicated
in the theory given above.

I'vom the given cquations connecting the old and new
varlubles we eliminate » ;. thus we have

y= IFT{? s thercfore < = :

do T &

to the lmits y =0 and y=15, wue%pond re%pecl,wuly 'u\=0

vand v= 0 il
vand p=p——  thus “\ \
] { &
fnorh FE "‘\
N Vrmzz;_[j Va:[l—v}‘”d
0o JaJ0

We have now to change the order of | ln\e atlon in

[
bz ww’\i' dbraulibrary.org.in
’ / Va;fl ‘fu)"’dmd'v
R

s

Tliis question has been bolved 11‘1 Alt 233 ; hence we obtain

s,."' ]
‘o 2 P
IN dedg\sf f Vi (L— )™ d do
LU \,
b —
iy \\ bu‘, v
2[ | Vi (1“”&) d’bdx-l—f Ve (1 —v) " do da.
TO 0§ \,)
: b+cs
We h@"@ now to change # for ¥ where
?"{\ -?J:'Eﬁ'fl-—-v), g—zm]—y;
{ ’\’ N b @ [
Ry e > )
Qﬂlus we ohtain [ af ] V'u dy du -+ [ ' [ "Vudy dis,
] ] Jon Jdao
ath

sm(‘e to the limits 0 and ¢ for = GOI‘I‘(‘,prT}d respectively 0 and

1 fOI‘ ¥, and to the lmits 0 and (1 ) for  correspend

respoctively 0 ang b for u.
v
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W oa=", the transfiormed infegral hecomes
1_ i 1

BN T Lo
’ I I seddv ddi - ‘ I il ol
Joto 1t

If & s nade indinite, these two tern combine. m{om
single expression

%
R L 3

1 i
- £ N

’ ‘ Fludeda, »\\ '\'

N ¢*0

241, Second Frample.  Required tn{\:\\fs form

‘ ’ l dd (hj\{'
)
ww.dbrautibrgiyeorging = », y= HE,' \ ""’

Perform the whole Upbh‘ﬁ.}ﬁn as Lelove; so that we put

R

ot ‘_& d ﬁj =
Y _Q do” (I —2?"
When y= 0\§e have v =10, and when y=c¢—a we have
v = c: ~Thfus the integral s transformed into
P\ \
0\,, . ‘sz
\3{/ Ju ‘In Vil — v dedv.

E

N \Now change the order of integration; thus we oblain

~\J -
\V4 fo fo Va(l - o)™ duds
Now put x=u(1 - u) and j—m= 1 —2; the limits of “
i
will be 0 and ¢. Hence we have finally for the transformed
integral

[ : J: V" dv du.



IN A MULTIPLE INTEGRAL, 278

242, Third Egample. Transform J‘[ V da dy to a double
integral with the variables + and 6, supp‘osing
® =17 cos 0, y=rsnd

, We may put & for v and » for  in the gencral for mulags B\’
thus N

e\
gzj—g—-gg%—rcos 6+?sm &=y, ’z'\'
O
and the transformed integral is M'\\
v ragar. \
it N

This iz a transformation with whic\the student is pro-
hably already familiar; the limits (st efREHkb B ¥oOERd
that cvery element which enterg\into the original integral
shall also occur in the transforn’:od ‘integral.

A partienlar case of thts exmmp]e may be noticed. Sup-
pose the integral to b(,

\\ff&# (ax + by) dzdy;
by the presen\t’ji‘&nsformanon this becomes

\~\:\’ ’ Uc,ﬁ {kr cos (0 — a)} rd@ dr,
1\]9.61% kcosa=¢ and ksina=5b Now put #—a=4¢, so
tfl*vt the integral becomes

Q” .

’ f ¢ tkr cos &) rdt dr;

then suppose rcos @ =4 and rsin & =3 and the integral
may be again changed to

ﬂ(;, () dec Ay .
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Thus suppressing the aceents we inay write
ffgb (az + by} de dy = ”q& o dedy,

where k=,/(a’+ ). The limits will gonorally be different
in the two integrals; those on the right-hand side must b -
determined by speeial examination, corresponding to given
limits on the lef-hand side. ¢\

243.  Fowrth Example. Traustorm ’ | Vdw dy.\baving

I ) A8 3
given D
. N\
w=au+by, y=Iu+tav, «a being gdier than b.

Eliminate %, thus ay — bz = (o — ¥ pyidd the first trans-

formation gives L
- . . . I  {
dbraulibrary .org.in B Bt e rarh N .

LA G SN
& Jo) _ LA
ghom

. N b | @ =¥
where V) is what V becomes when we put -t v for

¥ Next change the offler of intecration ; this gives
=] ?{ =

. O
aF._._ 2 m [ \ 3 22 D &
a J‘.‘\Vld@d:w“ 2 ravde
& Jo o JSlesb)y a L @-
\N &/ T R

We hguéefnow to chango from x to u by means of the

idn) : . dx .
ml“ff{(@..w:gu + by, which gives 7 =0 the 111’:111153 of u-.
corresponding to the known limits of # are easily ascer-
Adihed.

)y

Thus we have finally for the transformed integral

¢ o-by c=by
L -0 a
2 1A + ¥ _ g2 rd dﬂ.
(@ ML L Vdudu+ (@~ ) | v
Tat-g b

Th(le correetness of the transformation may be verified by
supposin to be some simple function of @ and y; for
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example, if V be unity, the value of the original or of the
2

&

transformed Integral is 3

244 Fifth Evample. The area of a surface is given by
the integral

ffdx dy \/{1 + (j;)s + @E)g} (Al‘t.' 1:78)\;\

required to transform it into an integral with respecto'§ and

$, having given 0
. *. "’\.
z=rcosd,  wx=rsinfcos¢, y=nsihPsin .

From the known equation to the su‘p%é z is given in
terms of # and y; hence by substituting\@@ ave au equation
which gives » in terms of ¢ and ¢. wihe, d braulibrary org in

We will first find the transformation for dz dy :

g"; - (% gin £ cog\;gb%—‘r cos & cos ¢,

g=%g§bcos¢—rsin€sin¢,

%gd—gsinﬁsincﬁ—krcosﬂsin@

3
N

WNdy _dr . .
\%—%mnﬁsm¢+rsm6’cos¢.

'.:'
' M
W

S Y Y s ( 2’1‘-,9).

H??‘c:ad{?dqs_d_q&a@_?sme r0059+dﬂsm 3
40

\”\t;bris dze dy will be replaced by

7 gin @ (rcos &+ j—;sin 6) dep b,

We have next to transform

Vi@ -G -

T. L, 15
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dz _deds  dxdy

Wo lve d6 " dedt T dydo
Az _dz do, ds dy
dp  dedd * dydd’

Also ;;; = :’;;) cos @ — ysin @, e N
dz dr \"}\ )
E?g_b = (-f;?%) 008 9 ) \ .

Thl‘ls (‘_' 18 1 i tl 1 l 1] m\(;i 13
A Irachiomn ol w a1
d. 1 2 I'N.\'

de dy  dzdy \\)
48 dgb dqf) ff&

N/
w, dﬁjzﬂﬁllibf{% OFFEift — 1 sin 9] (iﬁ st 6 sin ¢ + 7 sin @ cos ¢>)

.

di' L,o&, K] k?sm 0 sin ¢+ cos @ sin qb)

that is,
.\

- Sm(ﬁ;ﬁ@f'smﬁcosﬂcos‘ﬁde—a sin® § cos @,

and the dc,agmma‘ror is

N dedy duedy
N\ ' dfd¢ — de dé’

t}\Mue of which was found before; thus

\:; e 13111€cosﬁcos¢»da :-"smr,bd-——r sin’ & cos ¢

a;;}:

\
4 dr

7 51119(1 cos€+sm5@)
Similarly

e ?'cos:ﬁ%—krsinﬁcosﬂsin(ﬁ@—rgsin“ﬁsin¢

dy dr ;
¥ 8in 9(*.' cos @4 sin 0 36)
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therefore
. fedry? . dry?
Al il Zorn8 g (0T
N Efi)z_? sin 6-{—1’((@) + 7" sin 6(d'|9)
(dy B

*gin® @ (-r cos & +sind f’_')g
)
and finally the transformed integral is O\

1+(§—Z}2

'\

s o i

? '\ 2
# 243, There will be no difficulty now in the ‘Ez"@}lsformation
“of a triple integral. Suppose that V is a fietion of @, ¥, 2,

and that [[[Vadyds is to be transtGined into a triple

integral with respect to three newwanallesul ibusrwhivhigre
connected with @, y, z by three equations, From the investi-
gation of Art. 239, we may apteipate that the result will
take its simplest form when the old variables are given ex-
plicitly in terms of the news, Suppose then

w=F (u,v w), _ymz\jz; (w, v, w), z=f (w00 .. ... (1),

We first trans@jﬂ“: the integral with respect to z into an
integral with respebt to a. During the integration for # we
regard @ andyy.6is constants; theoretically then we should
from (1) expréss 2 as a fanction of z, %, and 0, by eliminating
% and v ;7we'should then find the differential coefficient of 2
with 2¢8pect to w regarding « and y as constants, But we
maysebtiin the required result by differentiating equations (1)
asbtiey stand;

NS :
~\7 df, du | df, dv | df
z T = T 1 e =
N fhus du dw ™t d dw  dw 0,
df,du  df,dv  df,
du o d dw dw= "
dfydu  dfydv  df, de
du dw ™ do do T dw ™
162
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R ebi il .
Tlmumate = and 2= s we Gl

dw el
iz ny
dw m '
dw de i dn
<AL (A AR Ay (R d e’f;')\:,\
T dis (rfu. o dw dp il l"-\f(}ff s cﬁl% (ZE\
RGN

i

vhore N

du dv  dn e

Henece the integral is transformed into

€

. ¥ \
V. r—— - w1 r?,'u.-,
" =y
du dv  du gA)

v Ha Iy SRS what 1V becoined when for z its value in
terms of x, ¥ and w is substituped. We must also determine
the limits of w from the knoWn limits of 2. Noxt we may
change the order of integration for y and w, and then pro-
ceed as before to remo¥e y and introduce ». "Then again we
should change the prder of integration for w and x and then
for v and z, and finally remove « and introduee «. And in ex-
amples it might bé-advisable to go through the process step by
step, in order.fo/obtain the limits of the transformed integral

A\

We mayphowever more simply ascertain the final formula
thus.  Tiansform the integral with respect to z into an inte-
gral with respect to w as above; then twice change the order
of'iﬁ%egration, 80 that we have

‘ fffﬂmdwm@.

di dv  du dv

Now we have to transform the double in 3gral with respect
to = and y into a double integral with respect to » and ¢ by
means of the first two of equations (1). Hence we know
by Art. 239 that the symbol da dy will be replaced by

(af, df, df,df, o
(du & ?za)d” dhu;
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and the integral is finally transformed into
[y ¥ awava

where V7 is what V becomes when for =, %, and z, their values
in terms of », v, and w are substituted. \

The student will now have no difficulty in investigating’
the more complex case, in which the old and new variahles
are connected by equations of the form \

b2y 24 0, w)=0 7,
by (@ 2w Wy =05 . e (2).
¢3 ({1}, ¥ &5 u rw):() .
Here it will be found that L&
Eﬁ_{ _ N; (_ig _ 1ﬁf@zaﬂibl'ary.01'g.in
dw™ D,” dv D) du” D’
also that N,=D,, aad*N,=D,
Thus ffdeac dy dz =fffV’ %74 du v dw, where

N = j:él (@iﬁ Iy i?@n d_‘?"e) + d, (f.iﬁ a$, _d¢, diss)

D

w \du di\> du dv/) dw\du dv  du dr
+di’§(d_¢_l @sﬁ%%)
e dw\du dv  du dv/’

and ‘—.ag\lg equal to a similar expression with z, y, 2 instead
of un\gro respectively.
~:’: £t may happen that equations (2) will impose some restrie-

»8on as to the way in which the transformations are to be

“\“effected.  For example suppose we have

\

ctytz—u=0, at+ty—uww=0, y—uww=0

From these equations we cannot express z in terms of w and
# and y, and therefore we cannot begin by transforming from
% to w.  We may however begin by transforming from 2 to »
or from 2 to »; or we may begin by transforming from x or y
touoryorw. .
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246. It may be instructive to illustrate these transforma-
tions geometrically. We begin with the double integral.

¥|
N ¢
A,
'S\
% N/
~\
ww dbraulibrary . org.in 5 B .
L
7] — - rz::.;_—__ ————— X

ny ®
N
ad
N N

Let f f Vdx dy be & double integral, which is to be taken
e
for all the value§®*% and y comprised within the boundary

ABCD. Suppese'the variables @ and y connected with two
new variableg@z"and » by the equations

oS w=fin),  y=Fi0 o) (1),

e
om these equations let’ u and » be found m terms of
x and'y, so that we may write
\:\ v u=1r (z,y), V= F ()i (2).
vV Now by ascribing any constant value to u the first equa-
tion of (2) may be considered as representing a curve, and by
giving in succession different constant values to w, we have &.
series of such curves. Let then APQ be a curve, at overy
oint of which F, {z, ) has a certain constant value 2 an
let A'SRC be a curve, at every point of which F) (r, y) has
a certain constant value u+ 8. Similmly let BPSD be a
curve, at every point of which F'g (w:, ) has a certain const-z}nt.
value #3 and let BQRI be a enrve, at every point of which
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F,(w,y) has a certain coustant value v+ 8. Let @, y now
denote the co-ordinates of P; we shall proceed to express
the co-ordinates of ), 8§ and R.

The co-ordinates of § are found from those of P, by chang-
ing ¥ into v+ 8v; hence by (1) they are ultimately, when Sy

is indefinitely small, &+ j—j: ov, and g+ d——z v, O\

NS ©
Similarly the co-ordinates of S are found from thosg’of P
by changing » into »+ 8u; hence by (1) when Su is indefinitely

. dz dy o)
small they are ultimately = + T Su, and y + E‘%@k

The co-ordinates of E are found from those of P by
changing both % info u + du and v i %+ &v; hence by (1)

they ave wliimately = + 3—:’:82& + %—? sdﬁgglﬂlﬁ%ﬂ@% v,

These results shew that I §, B, §are ultimately situated
at the angular points of @parallelogram, The arca of this
parallclogram 1w.ay be taken without error in the limit for the
area of the curvilivea figure PQRS. The expression for the
arca of the triangle QR in terms of the co-ordinates of its
angular points\igknown (see Plane Co-prdinate Geomeiry,

Art. 11), andthedarea of the parallelogram is double that of
the triangle\JHcnce we have ultimately for the area of

PRRS the gxpression
\\“ | . (d”b dy dw @-’) du du.
A\ “dude dvdu

#
2 S
o\

'e) " Thus it is obvious that the integral f f Vdz dy may be

VvV replaced by 2 H‘V’(gg g‘g — 3—3 %—D du &ﬂ;

the ambiguity of sign would disappear in an example in
which the limits of integration were known. In finding the
value of the transformed integral, we may suppose that we
fitst integrate with respect to », so that = is kept constapt.;
this amounts to taking all the elements such as PQES, which
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form a strip such as A4'C'C. Then the integration with
respect to % amounts to taking all such strips as 4A4°C'C
which are contained within the assigned boundary A8 CD.

247, We proceed to illustrate geometrically the trans:{
formation of a triple integral A

2

www dbraulibrary.org.in

Eﬁjﬂde dy dz e a triple integral, which is to be taken

er\B\ﬂ values of =, y, and z comprised between certain as-
Jghed limits. Suppose the variables «, y, and = connected
N\ wwith three new variables %, %, w by the equations

N g=f{u v, w), y=fow), z=F«2w...0

From these equations let v, v, and w be found in terms of
x, y, and #, so that we may write
u=F(oy2), v=Flzy 2, w=F(syz ... @

~ Now by ascribing any constant value to %, the first equa-
tion of (2) may be considered as representing a surface, and
by giving in succession different constant values to u we
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have a scries of such surfaces. Suppose there to be & surface
at every point of which ¥, (#, y, 2) has the constant value w,
and let the four points P, B, D, ¢ be in that surface ; also
suppose there to be a surface at every point of which
F,{z, y, 2z} has the constant value w+ 8, and let the four
points 4, F, G, F be in that surface. Similarly suppose
P, A, E C to be in a surface at every point of whigh
F,(», 4, 2) hag the constant value », and B D, &, Ftobé )
a surface at cvery point of which F, (2, y, <) has the corstant
value v +8v. Lastly suppose P, 4, F,"B to be in_a.Surface
at every point of which # (w, , 2) has the constant\walue o,
and O, D, @, E to be in a surface at every point of which
F, (%, 9, z) has the constant value w + Sw. U

Let =, %, z now denote the co-ordinates ‘of P ; we shall
proceed to express the co-ordinates of gHelother points. The
co-ordinates of 4 are found from shose of P by changing %
into u+&u; hence by (1) they afeildfwawdlPrahenrsinis
indefinitely small, R

dx 4 dz
v+ Su, ¥ +;E§ ou, =+ 7 Su.

The co-ordinates of &R are found from those of P by chang-

ing v into v +8p; h’en’qe by (1) they are ultimately

S d iz
x-}-% by, ¥+ z Su, =+ I v,
Similagifdhe co-ordinates of ¢/ are ultimately
o \d dy dz

dz
& T ; 2+ - &w,
N\ » Sw, y+ 5 bw, z+ ;

:f}; co-ordinates of ) arc found from those of P by chang-
Wughe into v-8, and w into w+ Sw; hence by (1) they are

“m+

3 ﬁitima,te]y

\

) 3

dz dx dy dy dz dez S,
Q’+&—g3'v+%8-w, g+ vt oo, 74 -8+ o b
Similarly the co-ordinates of , F and & may be found.

 Thesc results shew that P, 4, B, C, D, E, F, G‘ are uli;ii
mately situated at the angular points of 2 pa,ra.llele_piped ; and
the volume of this paratlelepiped may be taken without error
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i the limit for the volume of the solil bounded by the six
surfaces which we have reforred to.  Now by a known theo-
rem the volume of a tetrahiedron can be expressed in terms
of the co-ordinates of its angniar points, and the volome of
the parallelepiped 22 is six times that of the tetrahedron
ABPC. Henee finally we Lave for the volume of the paral-
lelepiped
+ do tdy dz  dy df) ) dy idede dz @L) )
= ldu (du dw dwde/ " durdvdw  dwde O

ds (dedy dz dy
dy (dv dw dw dv
Hence the triple integral is transformed )

+ U[ V' N dudy afw,\ /

+ )} BuBodu = + N ob duw say.

dbelpndigeityin sign would disappear in an example where

i’

the limits of integration woere knowih.
Ly

248. We have now givef}' the theory of the trans{orma-
tion of double and triple ifeerals ; the essential point in our
investigation is, that we have shewn how to remove the old
variables and replacg{them by the wew variables one at o
teme. We recommyend the student to pay attention to this
point, as we cofebivé that the theory of the subject is thus
mads clear andr:;}]plc, and at the same time the Limits of the
transformed dnéegral can be more easily ascertained. We do
not lay anj\Stress on the geometrical illustrutions in the two
precedin@ Articles; they requirc much more development
before Miey can be aceepted as rigid demonstrations.

"."2\49. Before leaving the subject we will briefly indi-

) .\ca’t"e the method formerly used in solving the problem. This
\nethod we have wot brought prominently forward, partly

because it gives no assistance in determining the new limits,
and partly on account of its obscurity ; the latter defeet has
been frequently noticed by writers on the subject.

Suppose f [ Vdedy is to be transformed into an integral

with respect to two new variables u and v of which the old
variables are known functions.
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Let the variables undergo infinitesimal changes: thus

dz dx
dxmﬁdu—k 7o 2 B SR (1),

dy ‘dy {
dy= Eg [T % L 2).

. . . . . a S N
Now in the original expression Vdzdy in forming dawe
suppose y constunt, that is, dy =0; hence (2) becomgs.'"

ey dy ‘€%
0= d—udaﬁ*% dy .\..:x}\u-(3),

find dv {roin this and substitute it in (1)3@131‘&?01‘9
dedy dedy\N

do = G &0 TGy dbraulibrary orgin

Z "3
N

Again, in forming (;’}y‘fﬁ‘ Vdxdy we suppose @ constant,
that 1s, dwe=0; hencedyN(4) we must suppose du=10; there-
fore from (2) NN

A W

SN 2 TR (5).

Frow (;ﬂ\a)nd (5}
x'\sn

OV _ydw dy d;::dy) od:

Nl dody=(Gi G~ @ du) Y

},n'd { f Vda dy becomes

With respect to the limits of integration we can only
give the general direction, that the new limity must be so
taken ag to include every element which was included by the
old limits, '



236 CUANGE OF TUE VARIARLES

250.  Similarly in transforming u triple integral

{ ” Vo dy ds

the process was as follows., Lot the new variables be #, v,
in forming dz we must supposc @ and y constant thug we
have \\\
Iz dz iz N
o -_—E_ f ety 4+ 22 « N/
= e du + el e+ dw w0, (\f“
dx dr dir o ¢
0=22 CE b+, O
du du+ dy b * df:"\.\\
oy dy ds
Tu dit +d_-v dy —f-odé\dw,
R
T X
therefore dz = ———éiilv-t- N\ AR (1),
« dbraulibrary.org.in ‘i@_@ _ Ef‘@b_"
dudy oy tu
where ¥ has the same vglderas in Art. 247,

0=

Next in forming dingve have to regard # and z as constant;

hence by (1) we mugt regard w as constant ; thus we have
O

\\J __dy d,y
"j\ dy—-cﬁ"&du‘f' d_'t} d?},
:‘i\'} 0=@dﬁ+@d‘f}'
:’\”‘ du d’y ?
\V
TR
J{i‘(ve}efore dy = v %.dxu W @.
£\ ax
\ : du
’ And lastly in forming de we suppose y and z constant,
that is, by (1} and (2) we suppose w and v constant; therefors
do =% Ao (3
%

From (1), (2), and (3)
dx dy dz = Ndy dy s,
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251. The student who wishes to investigate the history
of the subject of the present Chapter may be assisted by the
following references. Lacroix, Caleul Dif. et Intégral, Vo, 11
D. 208; also the references to the older authorities will be
found in page xI. of the table prefized to this volume, De
Morgan, Dif. and Integral Caloulus, p. 392. Moigno, Caleul
Dif. et Intégral, Vol 1. p. 214 ; Ostrogradsky, Mémoires den
U Académie de St Pétersbourg, Sixidme Sdrie, 1838, p. 40305
Catalan, Mémoires Couronnds par U Académie...de Bruxélies,
Vol x1v. p. 1. A memoir by Haedenkamp in Crelle’s Josrnal,
Vol. xx11, 1841. Boole, Cambridge Mathematicabdournal,
Vol 1v. p. 20. Cauchy, Exercices o Analyse et de Physique
Mathématique, Vol 1v. p. 128. Svanberg, Noun Heta Regice
Societatis Scéentiarum Upsaliensis, Vol. XHI.\l84<7, p- 1. De
Morgan, Transactions of the Cambridge Plgl, Society, Vol. 1X.
p- [133]. Winckler, Denkschrifien dex’\Kuiserlichen Akad,
Math... Classe, Vol. xX. Vienua 1863npdraulibrmemaiz by
Holmgren was communicated tothe Stockholm Academy
in 1864, and published in Vol. v5fthe Transactions.

Oy
W\

_BXAMPLES,
)

7{. Shew that if’@=asinfsingp and y=> cos #sin ¢, the
double irrt:egral f J dx dy is transformed into
PN

‘// \\\\ + ffab sin ¢ cos ¢ dep df.,

ZTf z=usina+vcosa and y=1ucoso—vsing prove
0% that
O

O J[re g 2e =] it T .

3. In the problem of Art. 239, supposing the limits of =
and y are hoth constants, shew hew the limits of
% and v are to be found, in each of the three parts of
which the {ransformed integral will in general be
composed.
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\/1: Prove that

o 2.8 .29 T * N
fﬂ .-’0 ¢ (a’a® + b Yy } d (fy = édf}fn & (2 da.

Y o
{

‘-/5. Transform ‘ l Vde dy, where y =2y and o = b

- 0~ v.
1 ~[-1{,f\~-“\_

'S
If the limits of y be 0 and « and the liwits of = be
0 and @, find the limits in the transformefl,integral.

¢ .
1 ra{l-+u) w’\ .
Result. | [ W (1 + w7 du do.

000
\ D

- 6. Transform “ g~ ¥ Tieosaty?) d&:}‘y from rectangnlar to
sww dbraulibpoigtocg-imdinates, and’t}iei{ce shew that if the limits
both of @ and y be zerq and infinity, the valne of the
@y ' '

2.3in «

integral will be
A N A _
»7. Transform L;ﬁq.’: (z, y) dody to polar co-ordinates, and
N |
. indicat.e\bhe limits for each order in the transformed
R integral.
R AW
' /> Bhew that
f“\,”
Ovp_way 1w
\ IS B i)
0(3.{_3;_}_3,) ¢ cl\/(a+;

N Ca

:\ -8, APply the transformation from rectangular to polar co-
" “ordinates in double integrals to shew that )
| +.°°f+°°'_ sdedy _ 2
e —m (x2+yz+ae}§ (@ + ye + 0,’2;]!‘ ata

j~9. _:'Bgané'fox".m the donble integral ff fla, ) dedy into one
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i wlhich » and @ shall be the independent variables,
having given : '

a=rcosf+asind, y=rsinf+acosd
Result. _ w7
~ " ” |
ﬂf{rcesﬂ—l—asinf?, rsin @ + @ cos §)(a #in 260 —r) dB dr,._ |
(O
N

v’
-10.  Transform I- f e~?~#dady into a double integralyvhere
» und t are the independent variables, v?héré'%= ¢ and
r=a*+9*; and if the limits of @.and % be each 0

and oo, find the limits of r and £ 5N\

e 2 et drdi

p M?ﬂb_ﬁ@ u [i,brary brik in’
1. Tf & and ¥ are given as fyfﬁétions of » and 8, transform
the integral” f [ f dxﬂ'éfd; into another where 7, & and

# are the variablés; and if @ =r cos @ and y =rsin 6,
find the volynie included by the four surfaces whose
cquationsxiﬁg‘r’ =g, 2=0, =0, and & = mr cos .

No/

) ud @ »
Jesulf. The volume =f2 for“m cosﬂdﬂdr=m—3; .
S L) g

. X
12, Jf e =yz, By = za, y2 =2y, shew that

#

ST renaeisan-sf[lo(2. 5. ot

:“\:.' v,
o> ‘
13. "Fransform UU Vda, dz, daydz, to 1, H%rand | where

#, =rsin 0 cos ¢, T, = 7 608 0 cos

@,=rsinfsing,  « =rcosfsin V.

Result. f f f f 149 sin 8 cos 0 dr 46 3¢ iy,
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14.

EXAMI'LES,

Find the elementary area included between the curves

¢ (z, y) =u, ¥ {z y)=v, and the curves obtained hy
giving to the parameters « and v indefinitely small
Increments,

Find the area included hetween a parabola and thib.
tangents at the extremities of the Iatus rectumb
dividing the area by a series of parabolas whick\fote
these tangents and by a scries of struight lmsﬁa drawn
from the intersection of the tangents, ;‘u;:

15. Transform the triple integral I I j FAEA :y;\a) & dy dz into

Y

one in which », g, z are the independent variables,
having given ¥ (i, 3, 2, ) = §'{and change the vari-
ables in the above mtwral h‘om x Yz lor, 6 @

sww.dbraulibPAYBEGhyen O

& \
)
NS
o»\\' w
4

\

Yo,y 27)=0, ¥, ;‘zrl‘?) 0, ¥, (2 r 0 ¢}=0

’5 (31# (hrrl d‘f‘t]fﬂ
Result\ f d* dr 49 _d$ . g ¢)drdddd,

d«p o, a0,
de dy dz

Transform the double integral

L NAS CARI I

in which =z, y, 2 are connected by the equation
@ +3"+2°=1, to an integral in terms of ¢ and ¢,
having these relatmns

@=sin¢ /(1 -m'sin®d),  y=—cos @ cos P,
z =38 0 /(1 —a*sin® ¢}, mi4-nt =1
Hence prove that

P

2 03 o 608"  + n® cos® ¢ T
f,, o ¥ {1—msin® 0) \/(1— n¥ sin* ) dﬁd¢=§ )
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Transform the integral { / j dxdy dz to r, 8, ¢, where

z=rsin¢ /(1 —ncos'd), y=1 o3 5in b,
z=17cos & +/(cos® b +u'sin® ).
Besuty, [[[EL0E= D eos 9~ sin B drdf &
S /{1 —ncos'd) W (eos" ¢+’ sin® g
',.\\ o

Transform the expression f ] g sin 8 46 d¢ for gxz,\;bi'u me,
) &

to rectangular ec-ordinates. K700

AN
. N
Rosult. } | f (¢ = pir —qy) d dy; tishould be in-

terpreted geometrically. \ A

W

Watytomu ot y=u,NPLdpihrosiprsn

| v aay @S vivaudnde
70

If o, =71 copd,,
O\
%, = '8 0, cos 8,
O 4
“33‘5\?‘ sin @, sin 0, cos 8,,
PVt

S B, =7 gin @, sin §,...5in 4,  cos 8, ,,

Y 4

\R; ’ &, =7rsin @ sin 6,...sin ¢ _, sin b, ),

shew thath o Vdw, de,...dz, |
=t [[[ VI H dr 00, d8,...d0,.,

where ¥ is any function of z,, Byr Ty and ¥’ what
this function becomes when the variables are changed,
and H stands for o .
' (sin 07 (sin 6,)"......si0 0, .
16

T. L C.
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CHAPTER XII,

AN
DEFINITE INTEGRATS. NS ©

952. WHEN the maennite megral of a functial i known,
we can immediately obtain the value of tho-definite integral
correspouding to any assigned limits of the yetiable. Some-
times however we are able by speeial methods to assign the
value of a definite integral when wh/yeannot express the
indefinite integral in a finite form; sgmetimes without actually

o AREHEBTARS FRHR of a definite iftedral we can shew that it
possesses important properties. \In some cases in which the
indefinite integral of a functith can be found, the definite
integral between certain Jiits may have a value which 18
worthy of notice, on acebunt of the simple form in which it
may be expressed. [AVe shall in the present Chapter give
examples of these‘g'éx}eral statements,

We may ohserve that a collection of the known results
with respect (o Definite Integrals has been published in &
quarto voluie at Amsterdam, by D. Bierens de Haan, under
the title,6f WTables & Intégrales Définies.

‘/’i(ﬁ Suppose 7{(x} and F (o) rational algebraical functions
P\ of(z) and f (x) of lower dimensions than F (%), and supposé
‘5. J$he equation F'(z) =0 to have no real roots; it is required 1
WOfind the value of
/ ? Flx)
—m ()
Tt will be seen that under the above suppositions, the
expression 4o be integrated never becomes infinite for I
values of .

_ Let a+ 84(=1) and  — 3 4/(-- 1) represent a pair of the
imaginary roots of () = 0; then the corresponding quadrafic

da.
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fraction of the serles into which g((—z))- can be decompoged,

may be represented by

24 (z—a)+ 288
(ln_a)ﬂ_'_ﬁﬂ ?

N

the constants 4 and B being found from the equation . N,
flatBy(-1) \s;
A_B -1 = sl YN S N
VEUmrareycny MWD
"
2883 dx LETAY
Now f———-——:?Btau‘——
J (@—af*+ 8 '
w 4 xiQ@
therefore f M QP
~o (2 —a) +’8\-;{y’\-:f,dbl‘aulibral‘y,org,jn
& — d: "".." 2 ] -
Ao [ FoH gl —a+ B

*

and hence it might be.said in a certain sense that if the
mtegral be taken between the limits —o and +o the
result will be zeros { This however is not satisfactory, for the
positive part of the integral and the negative part ate both
numerically ##/rite, so that it is not safe to assume that they
balance. Bub if £(z) is at least two dimensions lower than
Fx), we shall find that the sum of the terms of the t

which.a#@" are censidering is finite for each part of the

intestal, and then the positive part may be safely taken to ¢
baletice the negative part. For suppose we require the
<Btegral between the limits 0 and 2. let 4,, 4,,... 4, denote
~the constants of which we have taken 4 as the type; and let
' a similar notation hold with respect to « and 8. Then we

have for the integral the expression
h—a) +B7 h—a)+ 87
Al]Dg( as_ﬁﬁz * +A910g(—a;%{__ﬂf_g+

i 1

{h—ud)" + 8y
et A,,log—«?_l_—ﬂ—r“-

18 o

s
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This may be put in the form
2{4 + A +...+ A ogh

2

_% By
+ 4 loe u_i: + A locr k:«w +
[ =] 1+f81)‘ e :.‘_:—}—,8: %
o ¢
i
4, log St
I ——Tf?;-_

Now since f{#) is at least two dimensions lw’m than F'(«)
we have 4, 4+ 4,4+ ...+ 4, =0. Thus ths above expression
reduces to the second part, "which is fl]lltﬁ\}jh?]l % 18 infinite.

Hence wlien the limits are — ac 'm\\L o the sum of the
terms we are conmdemw vanisbhes A\

v dbraplibray ore-8 suppose F(z) ta) be of 2n dimensions, and
B,B,..... B to be the n (,Qnﬁ’tautb of which we have taken

B'as the type we have whgnj'( r) is at least two dimensions
lower than f ()

.@_‘ __JT{B +B,+...... + L,

\/ 254, As al examp]e of the preceding Article we take

X

P \% = g d
“,t\"’ - 1+m¥n; .
wher‘ggm’a.nd n are positive integers, and m less than n. Here.
R\ 1
N A4—By(-1)= =
X ’\. '\/( ) 9n {4 +||8 '\f( 1)};:; IS

\ ) and it s known that the values of a + 8 4/(—1) are obtame&_
from the expression

(2r+ e (2?‘-’;-1)7:'
05—+ /(= 1)sin on .
by giving to 7 successively the values 0, 1, 2, ...... up t0

n—1: see Plane Trigonometry, Chapter XRIIL
Thus by De Moivre’s theorem.
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fut BV = cos b+ y/(— 1) sin ¢,

where
b=(2n—2m 1) ‘(_27'{'—1)"3 (@r + 17— (2r +1) (2m5+1)vr ,
n O\
50 that
cos g+ /(—1)sin = —cos (2r + 1) § + /(- 1) sin (2r + 1)\ﬁ N
m +1 O

wlere 6==""""n A

- RE
Hence ,\\

1
20 —cos (2r + 1) 8 + /(= 1151; @r+1)0
cos (B +1)0 4 (= f)?sm @rene.

Zﬂ}
www.dbraulibrar y.org.in

I(_,lj_

sin (2r+1}8

™

therefore B =

2n . 3 3
Henee Q : >
“ 2de w 0 (2 — 1 ﬂl
f = 3111€N1n33+sm59+ . +sin (2n —1) 65 .
T+a™ & J
The sum of\hle series of sines may be shewn to be
“? ?;8; seeg Pﬂ‘ane Trigonometry, Chapter XxI1.; and in the
Sin
presen('\?v;e rf = -——2-—+--l T, so that sin* 8 =1, Therefore
{§ ¥ a"dr ks
x"\‘.‘:“ Jowm 142 . 2fm+1ﬁ_
@ I
\/' o d.l:
" de
i i : f the above result
It 15 obvious that J’o T half of the abov
that s,
.I-m “L‘Em da; _ ar
P 1
o 1+4 2nsin?-£vr

2n
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255. In the last formula of the preceding Article put

2™ =y, and suppose 2”;: 1 =% thus we obtain
o yk-l d?)_' _ -
"{0 1 + y Sin k"ﬂ' ------------------- (1).

This result holds when % has any value comprised betweal)y,
0 and 1. For the only restriction on the positive integcrs e
and % is that m must be less than n, and therefore hy pro-
2m -1 N

i
perly choosing m and # we may make engﬂ t0 any
N

wsigned proper fraction which has an even demdfiihator when
2m 41

m its lowest terms. And although we czpr{gpt make

exactly equal to any fraction which has'art’odd denominator
when in its lowest terms, yet we danJmake it differ from

wwsaghraufibetion dog.iis small & quantity-as we please, and thus
deduce the required result, o

In the last result put a;".’fcif ¥, Where o is any positive
quantity ; thus
Tr T g d A
[ —___.._—_—»7:\_, that 1s,f mkrhdf: ‘W_ .
o 1+a \s\fnkw . 0 L4+a"  rsokw
R R S
Let kr=s; thug" f z d‘f: T
. [} 14

T]g@)}ﬂy restrictlon on the positive quantities » and s is
that gaist be less than

)
RO —T
7

oThe student will probably find no serious difficulty in the
o \ethod we have indicated for proving the truth of equation
NAL) when [ is a fraction which has an edd denominator when
in its lowest terms; nevertheless a few remarks may be made
which will establish the proposition decisively, and which
will also serve as useful exercises in the subject of the pre-
sent Chapter. :

Let u:fmy*-_ld&’; thenuz[ldey_ “ydy .
01+y _g]..[_?’.« 1 1_,_3/;
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and by putting % for y we find that

“yidy _ atds _ J‘lyﬂﬂf p
f]_ 1+y '_Jol‘-[-z’ thus u = 0 l-I-y J:

: du_ (1logy . o 9
Therefore d—k_fo 1+y(f' y )a’_y(\)\

N

Equation (2) shews that % is negative if yH—‘.f‘ié comn-
stantly positive, and positive if g~ Tyt is copstﬁntfy nega-

. . AT . .
tive, between the limits 0 and 1 for . Hencg;zﬁg is negative
L . . N, 1
or positive according as & is less or gréat than 5. Thus %

Jiminishes as k increases from Ofe'e, and w increascs as &
www,gbl‘aulibrary,org,jn

1 ’o“

increases from 5 to 1 =N\

~ 3

Now let & dem{cﬁ any fraction in its lowest terms, in
which 8 is an o{ﬁfmteger; and let p be any even integer.

Let k&, =P;{;1 , and iss=f%1—, and let &, denote %. Let

N
Uy, Uy i Menote the values of [

s@i{\ﬁiﬁ,}‘kl, k,, &, respectively. Phen by equation (1) .

Ty dy when for & we sub- !
1+ .

™

N\ = and %, =——7— -
o 1 sinkw s sink,m

’”\\ w4 .

N\ Now we may take p so large that k, and &,

greater or both less than %; and then by the inferences d

from equation (2) it follows that ¥, must ]ie_gumerically 'b";
tween u, and u,. Thus u, cannot differ from =, OT rt{oia _
much as the differcnce of u, and #,; and therefore & fortior

by so much as the difference of

shall be both

rawn

, kil
#, cannot differ from
sin k

,27T
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255 Tn the st formula of the Preceding Article put
n 2+ |
2n

@™ =y, and suppose 7 =1L ; thus we obtain

g1

S Cam e — e e (1N
Jo L4y N IWAS ( )
This result holds when £ hos fny valine comypirised bet wesn
Oand 1. For the only restriction on the positive infegers m
and n is that s must Lo less than n, e there({bpg by pro-

2 g
assigned proper fraction which has an ¢ren Wedominator when

. \ 2m A1
in its Jowest terms,  Aund although vgth:umot make ~an

. e 4 1
perly choosing m and n wo may make - -—{'\c'qual to any

exactly equal to any fraction which(hils an oded denominator
when in its lowest terms, vet woSean make 1t differ from

o SRR AR i0I°by as smail & quigrtity as we please, and thus
deduce the required result,  $™

In the last result putz’la-:?” for y, where » is any positive
quantity ; thus ~
L] I:r;}:r—.] fZ-U e

[Q?'.Eh ‘Z‘”‘"l dr ‘,,.g'?r th"f‘ . I o ——
o l+a \f'sinkw—’ el A Y L

\ w g1 s
Let kr=s; thus [ E-_d.‘;’ ——
b\ Y; Jo 14w

N> - . " i
The/only restriction on the positive quantifics v and s 18
tha ¥ must be less than r,

7% The student will probabiy find no serious difficulty in 'E-he
“\method we have indicated for proving the truth of equation
V' (1) when % is a fraction which has an odd denominator when

in its lowest terms; nevertheless a few remarks may be made
which will establish the proposition decisively, and which
will also serve as useful exercises in the subject of the pre-
sent Chapter. :

-8
L b Rl
7

e 13 1,51 7 @ LT
Let w={ YW goo . 974y ("5 dy,
{ﬂ Ty Mene o 149 + ; 14y’
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and by putting ; for  we find that

Tyldy_[teds, _ [y
L 1+y_[1+z’ thus u—fo 14y 4

0g Y, ra_
Therefore d}c f lfg(g/‘ =5y o (B

"\

Equation (2) shews that ik

stantly positive, and positive if "~ —y™ is cor;sta.ntly nega-

tive, between the limits 0 and 1 for y. Hen€ = T is negative

is negative if ¥*" 'y W'eon-

.\ . . R |
or positive according as % is less or grps@tﬂe\"than 3- Thus »

diminishes as % increases from Mw%;w&hnbiaﬁgew_iﬁs k

. 1 RS
increages from 3 to 1. oSN

Now let = denotg” a.:njr fraction in its lowest terms, in

which 8 is an odxiii;teger; and let p be any even integer.

1%\
Let k :p;)ﬁ x \a d k, ——-E-j_—l, and let k, denote %. Let

S p8
Uy, Uy, U c?enote the values of j yb- when for & we sub—

+y
stn\t&ilp k,, k, respectively. ’lhen by equation {1}

kil and T
‘.. . = —_———
A\ 1 smkﬂ' s sk,

N\

“Now we may take p so large that &, and Z, shall be both
greater or both less than 513’ and then by the inferences drawn

from equation (2) it follows that wu, must lie numerically be-
tween u, and #,, Thus %, cannot *differ from w, or % by 50
much as the difference of 2, and #,; and therefore @ ortiori

#, cannot differ from —L by so much as the difference of
sin k,r

¥
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u, and u,. Hence as p may be indefinitely increased we

have finally », = sinwk -

Fulerian Integrals.

) ¢
/256. The definite integral f 2 {1 — )" dz is called, -
a Nows

the first Eulerian integral; we shall denote it by the sgi?}_bol
B (1, m). This integral issometimes called the Beta, fanction,

The definite integral f 67 dr 1s ca”e((;ﬁhe second
’ S <N .
Lulerian integral; 1t s denoted by the symbo¥'T (n). This
integral is sometimes called the Gamma funstion,

We shall now give some of the propetties of these inte-
grals; the ¢onstants in these in tegralgiwhich we have denoted

vk db Balin AT8,SogPRsed positive m alPthat follows,
v 257. In the first Eulcrian,'ji;[ltégml putz=1-z;

1 LW A1 I
thus [ 27 (1 -2t f 21— 2V day
. Yo 'ng“ o
this shews that the gonstants { and m may be interchanged
without altering th{‘wﬂue of the integral ; that is,

S NVB m) =B (m, ).

Again In, {ﬁe“ﬂl'st Eulerian integral put = i:_/— ; thus
O Y
I )
. & 27 (1 — pt gy =j ¥ .9;‘ .
’\\’“. 'fo ( ) a {1 +y) i
2 8 1

I ’“&h ic] i = e
{1 ¢ same integral put & iy thus
\ ) . fl' -1 1 — gyt do = ® __ym_l d!l
| \ wl (1 - 53 o AF g™ Gk
. J2_58. Let €% =y, so that ¢ = log 1

=; then we have
y .

bl - I 1 H=1
e de=1{ [log -_)
f . f . ( 85 dy,

which consequently gives another form of |° (n.
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-'/259. We have by integration by parts
fe'xx“ de = »-e‘“m"-}-nfe"m“"dﬂ:;_ .

and &7&" vanishes when # =0, and also when z = w0, (See\

Duifferential Coloulus, Axt. 153) ; thus R
e o f:\..\.
f 6 de="n f ey d; 'S
0 i ;’ N/
that is, L (n+1) =0l {#)..cooeerns e b (1),
¢’

A

i . h ”‘\- ’
Since fe"’ die=—¢ we have j ¢ de=1that 1,
1]

D (D=1l (D),

W

From (1) and (2) we see that if n han integer -
ww.dbraulibrary . org.in
I'(n+L=in
When # is not an integ@r ‘we may By repeated use of
equation (1) make the value of I’ (n) where n is greater than
unity depend on that of I'{m) where m is less than unity.

\{GO. By asguniii% ka = z we have

] \ 1 PE- P {?’Z.)
NPT I | _ —F -1 — L
{ T dx_k‘,lo 6 de JERt
N
261./2We shall now prove an important eyuation which
connecty the two Eulerian integrals.

N\
‘“};}ntegrate the double integral f f
N o Jo
“\Mirst with respect to #; we thus obtain, by Art. 260,

-1
ghm=l ym—l P dy d-’ﬂ

o :‘,’I,m—!.d'2
F(z+m)f0 [:I"{'_y)“m.

Again, integrate the same double integral first with respect
to ; we thus obtain

@ —F 4wl

P(m)f"’ 2 g,

o o
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that is T (m) ]0 o d,
that is T (m) T"{0). y
] ~1
¥idy DT (m) O
Henco f(, Aty T{rm A0
Hence, by Art. 237, A\
N\
| Bmy-LOTm

Trmy " O

262. In the result of the precedi@}ArticIe, suppose
L+ m=1; thus, if m is less than unity;’
X

.3\(.
L | ) \}
Ly = ['{m) INL — ),
R }. -[—y . «a3
ww v .dbraulibrary.cik.in o
since ' (1) = 1. Henee, by AR 253, if m is less than unity,

B (1) =T
| PE?Q\F (1 —m) e
¢ &\J
263. Put m%\é in the last resnlt; then

27 TOT@=m

5 therefor(;ys;w’ _ I'3) =y

A\
_,\Q\“ﬁrithout using Art. 235, we have
=N w 1-1 »
:"\\; 1y = E‘ZA— ——.d'y = f —dm - E-r =
\/ F &) f[, 1+y 2 o 1+a2° 2xg=m
therefore ' L {4) = yfar.
We will give another proof of the last result.

Let » =f ¢ de; then it is obvious that » alzo
L]

= f: ¢ dy;
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thus u = [ ¢ i % { ¢t dy
SO Jo
| J = dr dy (Aat. 66).
Jo Jo ~
This double integral is shewn in Art. 204 to be \
R ‘\t\’:\’
-1 =7 AN\
410 ‘.’@ " rdf dr 4< . )
therefore 1= ﬂ— \\ )
2 &
Now F(Jﬂ:[ i da, puta,%;\'
Jo
‘[j.hu I A [ e ..
® ! o) =2 “’0 ¢ d‘y 220 dM‘auhbl ary.org.in

264, We shall now give au~e§;presbmn for I" (n} that will
afford another proof of the r(,\i}t&m Art. 262, We know that

the limit of —h—l when # mwmdcﬁnltel_} diminished is logz; -
henee Q

(log 2 \ = limit of T‘Z) ] ;

50 wa ma; W 1\‘9

'\ (100' 1)H _il= a:”)"’"
"\V 2 T\ + 1

N4
wher ' is 3 quantity that diminishes without limit when A
dtles*so
4 1
\“> Put b=, then, by Art. 258,
L (n) =9 ‘f {1- w')“‘ldx—l—f ydx.
In the ﬁrst. integral put @ =" ; thas

Tn) —fn yde=¢ f 2 -2 e
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We have it in our power to suppose + au integer; then
the integral on the right-hand side, by Art. 33, is

Al
NV T o S (n—l—fr—l)il
Let r increase indefinitely, then y vanishes and we have
- 1.2.3.....7 V)
Tim) =1 L2.5...... T
(1) = timit of win+1)..... (r+r—1)} ! \ \3
.

285, Yrom the result of the pl‘ecedint* Articll',» we have

(T (m)p* Loy o }
Tln-m7T (ntm) n (n+ 1)\2 Crz,—{~2)2
A particular case of this is obtanne&\ by supposing n=1;
Al mﬂlﬁauhbl ar% orgin

TA—m Il +m) =(1 m} m)( "“;‘—) ......... :

the cxpression on the rlght“hand sido is known to be equal to
Sm kirkin

; see Plune Tm@qmmetry, Chapter xx111.: thus

mMm)P 14 m)= Ly

sin m'r

Yin

thevefore ¢ \ 2 T (m) T (1—m)= (Art. 259).

Ve sin me
{ "\“ v/

* We shall now establish the following equation, »
befug an integer,

QTR (-
Let X=P(%)r(§)r(%) ...... r(’”’f);

then reverzing the order of the factors we have

X=r(}-%)r(1g§) ...... r‘@
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Multiply, and use Art, 262: thus

n-1

(n—Lya’

k]

.om . 2 .
BN — 31N — ..iuus 31n
n %

: ' O
The denominator is equal to 2%_1 : see Plane Trigonometry, \

Chapter xx117.  Thus the result is established, N N,

267. A still inore general formula is A\
1" () I‘(m—!—;—ll) I‘(w-i— é) ...... I‘(a; _f.“;;}) “\\

— Jpi) (2m) * nin,

which we shall n ove. b & () dbatite
oW prov Lot ¢ (l@\f}dbl‘aulibrary,org,jn

w T {x) T (.ﬁb-l- %)...,;:T"(m_]_ﬂ;l) .

nL\fow) ’
N\ w1
we have then to shew that ¢ () = (2n) *n~}
We have : &“\ -
&

| -1
W+ DT (o4 1) T (s 14 223)
¢($+1)=."\:’“

m\J al' (nz + n)
~"\x:’ 1 2 -1
O e (ot (s D) (2 4"52
= (nEchn% g) (n.a::)- n—2)( ...... = )¢($)=¢(m)'

“N\y/ Similarly ¢ (z+ 2) = ¢ (2 + 1) = ¢(2) ; and by proceeding
\/thus we have ¢ (2} = ¢ (@ +m), where m may be as great as
e please.  Hence ¢ () is equal to the limit of ¢ (1) when
# 15 infinite ; thus ¢ (o) must be independent of o, that is,
must have the same value whatever may be; hence ¢ {z)-
must have the same value as it has when =) thus th‘?’-
theorem follows by the preceding Article. This theorem is
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ascribed to Gauss; a more rigid proof is given in Legendre’s
Eaxercices de Caleul Intégral, Yol I, p. 23; sec also the
Journal de U'Lcole Polytechnigue, Vol. XVE p. 212,

268. Take the logarithms of both sides of the formula
established in the precedmcr Article, and differentiate with <
respect to #; thus we obfain A

oI (na) _T'(e) (o + «,le)
Linz) I'(x) T (w R i)

T e w1

+??.10g'ﬂ-....:...’ .......... (1),

~NY

where I"(¢) stands for - dr t(t .\’.\\
ww.dbddidignentiate; ngain; then, puttmg z for nx, we obtain

d

dszlOgI‘(z) vg: ."

dlog I :""1) & LogT o+ " - 1)
@hylﬁ+_ glfet ) dlogT (o4 }
ﬂ’ d$. ,\ drt oot dmg

o"

If n be made \ﬁ’lm’se the right-hand side vanishes, for it
becomes ultunately

P\ TH g 10g T (x)
xt\ No/ f d«'c
that Y 1{0'5 logT' (& + 1) dlogT (@)
3 n dx de
;\‘: " Hence we see that if z be infinite d’ lo_g SP (=) vanishes.

r Tt _Pe+?)_ Te+3)

Now I'{a) == = g e

' (@ ) wlx+]) welet+l)z+2)’
take the logarithms and differentiate twice with respect to #;

e @logT@) 1 1 1 .
thus da:e = $—¥ + (m—q_-i)s + '(?‘H_—g)—, +...ad mf:.....(?).
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The series just given is convergent for every positive
value of .

Integrate between the limits 1 and @ ; thus
dlog I'(z) =

da
n o1 11 A -
(1 B E) + (E Ta+ 1) +-(§_ w+2) +""""f(%)’\"~\
where — € stands for the value of @%@ when :gw'f"l\.w

W .
s i = l’ﬁ convergent
for every positive valuo of a, as we maydnfeér from the fact
that it is obtained by integrating betweesiinite limits a con-
verging series in which all the termg-liave the same sign; or
we may infer the convergence of thserickbfironhi Hiter faot gliat

. .1
The series whose #® term is = —
n

h : el DA ically less than
the general term, being m) , 18 numerically less
(%:wi—)f, so that the serid§%is numerically less than another

which 1s known to be{convergent.
) .
The quantit®Cis called Buler’s constant; it may be
RN T

presented ugdéi:;various forms. Tt appears above as — 5 ay

0

PN\ -
that is gav=I"(1). Now I'(n) = f ¢ &' da; therefors we
O e -
ha:\'&fv(??) = f %" log w da, and T"(1) = f ¢ log z de,
A\ 0

"\ " Again suppose z=1in (1); thus

I:@—logn=

()
1(1“’(1) I"(l+%} P’(H”—;;—IJ
L

Ipﬁ)+-;_(ﬁ%)+ 1-‘(1_}_“"1)
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Tucrease w indefinitelys then the right-hand side be-
comes a certain integral, namcly [ 12 ;; log T" (i) s, that is
log T (2) — log T'(1), that is zero.

I"{n)

Hence the limit of T~ logn, when n is made infinite, "\

ig Zero. &)y
o Q

In (3) suppoese & infinite ; hence, with the aid of thorésult

just obtained, we sec that ' is equnal to the limit.gwhen = is

infinite of R4
1_‘_1+1+!‘. +1_,l ; N4
5 3 4|+ ...... ﬁ Ogn.

o~ \J
2.\ _
It is easy to shew by elementary cofsiderations that this
V\L{I&EPanlﬁj}gpym%g&Algebm, Chaptepdiv. Example 12,

The value of (7 to 10 places gf\decimals is 5772156049 ;
the calculation has been carried %o 263 places of decinals:
see a paper by Professor J.oQ."Adams in the Proceedings of
the Royal Society, Vol. XXvIT' page 88.

269 In equa;tieﬁ:(?é) of the preceding Article change &
into # 4+ 1; thus \\ P i

d'logT (1,1_”:&) 1 1 ]
dy™ —($+1)§+(x+2)2+(m+_” :

9 K22 :
differ udtgbe # — 2 times; thos
. ‘é%a’gm +a) 1 1
T\ i Jalh & e G ) L (S
Ay dr =1 {($+1)"+(»"’+ 2)"
Y 1 1
Ty Y

v

Let 8, denote the infinite series 1 - QI.,.‘+31-“+... ; then,
if » be not less than 2, the value of Q“IO_g;;g:}_x)

2=0,is [n—1(—1)"§,.

when

>
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. dlog T (1 + )
de

Also the value o , when ®=0, is — (;

and logI'(1+a) =0 when ©=0. Hence, by Maclaurin’s
Theorem, .
St 8a

2. 8

+57
4 O\

logT {1 42)=— Cz+

The series is convergent ag long as @ is numerically lesé.than
unity, Now by the property of Art. 262, combined avith that
contained in equation (1) of Art, 259, it follows thab I" (x) is
known for all positive values of & if it be Known for all
values of @ between 0 and %, or for all ¥alwes between %
and 1, or for all values between 1 and,{3yand so on, And
the series just given will enable us tg"dstermine the value of
log T' (), and thence of T" (), for ailwveidbrautibyabyammin 1
aud 11; so that we may consider .that T' () can be caleu-
lated for any positive value of N

Legendre has constructea table of the valnes of log T (=) ;
and an abbreviation ofthis table is given in De Morgan's
Differentiol and Intagpal Calculus, pages 587...580. We ma
also refer to an a ticte’by H. M. Jeffery on the Derivatives of
the Ga-mm-ch%fsn in the sixth volume of the Quarterly
Journal of Mafhdmatics.

A%

270, j)i"iligher degree of convergence may be given to
the ser\ié}’obtained for log I' (1 + ) thus:

|\ : St 8,7
N\:.\’:, 10gr{1+m)=_0"6+‘?“-?+""
9 ,

logT" (1 — &) = Gm.;.S;a’s_;.’SsS‘i_!_m;

now Pl+a).T(l-a)=2l ()T (-2

=% by Art 262:

_ 8N xmw
LG 7
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. : FE g 1 ot _:_l G 6
therefore - log PR S’ + 5 St L LR
' i Sa
and 10qI‘(1+m)=}-10g el mCx——S"f—f—tEi-—..
= 27" sinaw 3 3

The result may also be written thus:

1 am 1 1+ (N
logT'(A+ o) =glog mm—glogy ) O

| 1 A
R R R A

the series in the last line converges rapidly whén o is numeri-
0
.

2 3

cally less than %
rw.dbraulibrary org.in AN
971, Trom equation (2) cf “Art, 268 we see that
@’ log T (x) N
e

is always positivey and is finite if 2 be positive:

dlog T () . N . .
hence ﬂ-%}-g increases algebraically as z mcreascs from

0 to infinity, and th‘é%fore cannot vanish more than once.
Thus T (x) cannot_have any maximum within this range of
values of @, nor'ean it have more than one minimum. It 18
easy to see tHat T (x) has one minimum, between =1 an
z=2; fr D) =T(1).

' To:ﬁé"bem:.line the minimum of I' (1 + «) we differentiate
one ‘o}‘the series found for log T (1 + ), and equate the result

tozero. This gives an equation from which it is found by
(étial that 1 + @ = 14616321.... |

272, Many definite integrals may be expressed in terms
of the Gamma function; we shall give some examples.

| The integral f . e'f"“ dz becomes by putting y for a's"

Tevdy . !
f Tasy that 8, 5T (1), or %’
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PP el § W L 9 x g
gain, in . @Ta put - e Tra thus we
obtain

SR S s = . 1 T (m)
" (1 + a')!.fu y‘ 1 (1 —?;") 1 dy, that 15, " (1 ¥ a}x T (Z_'_m) - A

Again, in [ (1 — )" do put & = y; thus we obtaih
o ) 7N\ ¥

B r(é) Tm) N
%f ¥ (=g dy, that is, =2 0
¢ ol §+\ﬁ

bl o

ANY;
1 D, o
Thus - f sin®feos” 0 df = L&mﬁ-@iﬁﬁ?y.or&in

A Tpt1 +1
t g oY (_2_) r (q_‘f)
S TR~ wAl

e ™ o (£ %

N r{5ts1)
EEFAN -
oL P at il a) de by
_ . Py b= .
Again, in fu A A2 putg=— T=yT5 05’ thus

we obtain N f

RSN 2P, o TOT ()
aiiwﬁ Y (1 - y) dy, that 15, m .

[

O
91% in f 2 (@ —2)" dr put @=ay; thus wé obtain

N\

1
O [ gy i e LT
y °

T{+m

274. It is required to find the value of the multiple in-
tegral :

Uf...m“ym"‘z““l cadzdy de..,
17—2
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the integral being so taken as to give to the variubles all
positive values consistent with the condition that ® +y + 2+4...
18 not greater than unity,

We will suppose that there are three variables, and conse-
quently that the integral is a triple integral; the method
adopted will be seen to be applicable for any munber of
variables,

4 '\

We must first integrate for one of the variables, kum:)ose 2;
the limits then will be 0 and 1 — = — y; thus betwaen these
timits ¢4

@ y_ T o
e | —&—1%
fz dz = P st 1) (1 —

Next mtegrate with respect to one oi\the revaaining varia-

b}}iles S]E']P pose the Timits will be @ and 1-—2a; and botween
w <

,.\

N

h

AR ﬁlP 273,

fy"‘“ (l—az—yrdy= ({ N %mz;i(nll‘lgﬂ +1,

Lastly integrate wu{h respect to = between the limits O
and 1; thus betweenthese limits °

f H(l\\)m&v TOT (ot nt 1)

1"(3+’m+n+1)
Hence\hé ﬁnal result is
\\_I"(fn.) P Tw+1) I @ T (n+nt1}
\I‘(n+1) Pm+atl) Tltmtns 1)’

“}mtls, _PM)_P_(_’Q
* I‘(Z+m+n+1)'

275. It is required to find the value of the multiple

integral
ff B GE dy e
the integral being so taken as to give to the variables all
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positive values consistent with the condition that

0+~ & -

is not greater than unity,

? 1 r ' '
A 3 = (.E.) . = (‘E) . = (é’ y navien
sume  @=(2), y=(g}, 2 ry) A
Then the integral becomes NS
“R fff w*" 1""_ o dzdy dz ";
pgr.

with the condition that z+y+2+... is not}reater than
unity. The value of the integral is, therefore, by the pre-
ceding Artiele,

) ?} B .. ( gw)«):v@rauhbl ary.org.in

pPgT-- p (;J—+3,'-1:-+ ...+1)

This theorem is due tol LeJeune Dirichlet; we shall glve
Liouville’s extension of itin Arts, 277 and 278,

276, As a smnplu case of the preceding Article we may
suppose p, g, 7, o-be each unity, and «, B3, v, ... each equa.l'
to a constant k hus the condition is that Etn+{+..
not to be greaﬁ:gr than k. Therefore the value of the mterfral

xj\:::‘\ j ]J] LET L dEdydd.
o TOHTm)T ().

3 \:w: e U Ay LA e
N O & T¢+mtnt.. +1)’

i\'.’h:—l—mﬂ-h.‘

Similarly if the integral is to be taken so that the sum of
the variables shall not exceed A + Ak, we obtain for the result

N (R ApyFmete,

Hence we conclude that the value of the integral extended
over all such positive values of the vatiables as make the
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sum of the variables lie between i and h+ Al is
J'.V {(h + Ah)ﬁ-m-lnt._ — hc—hr:-l-n-l'“.},
and when A#h is indefinitely diminished, this becomes
N{itmtnat+ . YR AR,
N ORNGOT N FIS— A
_1—‘(5+m—1—ﬂ+...)h A R D

N\

that 1s,

277. It is required to transform to a single ini\egi:a,l’ the
multiple integral A
"
ﬂ- BT ST f @y a4 LNy da.
AN/
the integral being so taken as to giver 40 the variables all
positive values consistent with the condi;i}m that #+y +2+..

~IBRL ATERLEY Bhan G
We will suppose for simpligity that there are three
variables. By the precedinglArticle if f(x+y+2) were
replaced by unity that partof the integral which arises from
supposing the sum of the variables to lie between % and
h+ Ak would be ultimately

&)“1;‘ (m) F{ﬂ’) Rttr-1
.’E\_—,l(ﬁ—!—m-&n) 3 Ah,

And if the w&fa of the variables lies between % and 4 + Ak
the value,of” £z +y+2) can only differ from f(h) by a
small gquaatity of the same order as Ak Hence, neglecting
the sqnare of Ak, that part of the integral which arises from
suppesing the sum of the variables to le between % and
JeR DA is ultimately
)" D (@) T'(m) T'(m)
I'(l+min)
Hence the whole integral is

T (T (m) Tin) ro '

.This Process may be applied to the case of any number of
variables, :

F(R) Bt AR

N
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278. Similarly the triple integral

[Jfere (@ (3) (G} aancs

for all positive values of the variables, such that

E+ @0 RS

is not greater than ¢, is equal to AN
¢

) o n . . oD
, ,‘I‘(— T F)r(-) R
YEY ) (g L rw T
pgr I‘(E.{.E’.{.E) 4 \ )
roq r N

W

. . AN .

Thig process may be applied toybhe)ease of any number of
variablos. \a\t\’.ﬁw_dbrauhbra y.org.in

279. Tt is required to tzAbsform to a single integral the
double integral O8N

[fo s dy o
EACE R
where the inted a.lls to be taken for all positive values of
@ and g such that's +y is not greater than &; the quantities
P, ¢ u, o, and ¥'being all positive constants. '
N\

Suppgse that ¢ is not less than 5 We have
\::\%zq.-aa:-!-by=u+w ety —(e—dy=U—-n,
’Wb:ere U/ stands for w+a{e+y), and y for (@—0)y Thus

“\{T.:: + ax + by)™!

+g+1)
- U""“{l+(p+g) %+@l@—1@2 g7 +}

i~

the series here given being convergent.

The proposed double integral may now be transformec by
applying the method of Art, 277 to every term. Thus the
double mtegral
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_ f * {1122)__?_(_9) o LT+l et
o1 T(p+g wraefr T{p+gti) 2 (o atf

P__(P: I (5_7 +2) ("p +Q’)(P 5- g+£ _(a__ By e
r (_p + q + 2) 1.2 (u + a_t)?"‘ﬂﬂ

o [FT (Tl (p+@Tig+D) (am bt
fl(?)fu(th)M{r g

+...}dt

(pt+tg) LTlp+g+tl) ntat A

9,
P+ (p+g+1T(g+2) (a—p}# 1,00
" Tip+g+2) 1.2(u+at}2+'ti"£~z€
_T'{pTg f B gla—0b)¢ R&S
I'i(p+q) 9(u+atiﬁi{1+ w+ ol \%
A )
(g+ 1) @=07 ¢
w.dbraulibrary.org.in +%,{%ﬁ+a)t}‘ -+ ] dt

RAOINOYL f-to ﬂﬁff}'* di

CTp+)Jowr a7 Gtk

_T(n)T(g fk( e gy W59
0

TG o G ety @y

In a similar ma rwe may transform to a single integral
the triple integral\ &) Y & ¢

S

b }J’J‘ J‘ "y de dy da
\\ (% + @ + by -+ cz)™ "
where the-integral is to be taken for all positive valucs of z,

%, and\z'such that  + y + 2 s not greater than k; the quan-

t:i,t{es’ P, ¢ % u, a, b, and ¢ being all positive constants.
U

\ N

Suppose th_a;t @ is not, less than & or ¢.  We have
Utortbytoz=uta(etz) + by~ (a- c) 2.
Proceeding as before we find that the proposed triple inte-

gral can be transformed into g series, each term heing of the
torm represented by the produet of -
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prag+r) _(_p_~|jg+?~+1)...(p+g+r+p—-1) (@—cf

____ [

and the triple integral f [

ot yﬂ.-l Pl dx dy dz
(v + az + az + by) e

: N\
Then, as before, we can shew that the triple integral just
expressed can be transformed to Ke *\
ICORNOBNGETY f“‘ P g O
Ulp+tg+r+p) Jo(utat)T™7 (u+ bt )

Henee finally the proposed triple integ"ra,lmié\'ﬁéen to be

cqual to ' U

MOAONGY LS PLCED L
F[p+q+r}'~o(u+at”"(u+'?}(1"\ ’

%+ gt
that is, to wwhgidbraulibrary org.in

I‘_(p) P (g:‘-l—‘ {T) k ‘s..):." “épﬁp‘-r-‘l dt 3
Plptg+n Ly (@p.} at)? (u+ bt (u+ ety

This process may be zipﬁlied to the case of any number
of variables; and it ngsy receive extensions similar to those
which Arts. 277 and 278 supply of the process in Art. 275.

M

280. It ig*wequired to transform to a single integral the
multiple intgg;ai

){ ﬁ o flew dag + ... +am,)dz dz, ... dz,,

1)h‘?"&:‘:&,"’ral being so taken as to give to the v?riables 1::1;_1,’&5
Y&lues consistent with the condition that z*+2'... + o, is
(ot greater than unity.

h

\'4 By successive applications of a transformation for a double
integral given in Art. 242, the multiple integral may be
reduced to

ﬂ[f(k’-b"‘_) de, dz, ... dz,,

where k=ala +a’+ ... +a]};



266 DEFINITE INTEGRATS,

and these transformations do not affect the condition that the
sum of the squares of the variables is not to be greater than
unity. -

We have first then to find the value of the multiple integral
fj ... d@, dag ... da,, the variables being supposed to have all

values consistent with the condition that «,?+ 2+ ... +&5
18 not greater than 1 —a" If the variables are to havesouly
positive values then we obtain the value of the intagral by
supposing in Art. 275, that each of the quantities, 4, m, ... s
unity, that each of the quantities p, ¢, ... is eqiahto 2, and
that each of the quantities «, 8, ... is equal’% V1 =ak
Thus the result is

-1 % \..q:
r 0,
{ 791}1 1 &) .
Qn—i N\
ww.dbraulibrary,ofg,h](-\ ( 3 + 1) A\

But if the variables may hay8 hegative as well as positive
values, this result must be multiplied by 2°*. Thus we get

[ AN

A\ (1 _
Or ("5 41)

\

Hence, ﬁna:liy, since the limits of &, will be — 1 and 1, the
- multiple idtegral is equal to :
\\” ,H.'n;_l 1 n—1
A\ *——-—-—-{ Fllz)(l -2’ * da,
N\ I\ il 1 S
( S+ 1)

n—=1
_ms)"s_

#
2 8

TN, !
N

O - . .
\ This agrees with the result given by Professor Boole 1
/ the Cambridge Mathematical Journal, Vol. 111, p. 280, as it

may be found by integrating his equation (15} by parts.

281. Tt is re
multiple integral

quired to transform to a single integral the
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the intcgral being so taken as to give to the variables all
values consistent with the condition that @/ + & + ...+ 22
is not greater than unity.

Ag in the preceding Article the integral may be trans-
formed into N\

flie) N
f ‘V‘(]-‘“‘w —:1': ﬂ‘::) dw,dsg...dw“. \' .‘”\

First integrate with respect to the variables af, w‘,
the limits being given by the condition that =}4/% + ac
is nol greater than 1 — x%.  If the variables a;eg\lso have only
positive values then the integml

dz, da: da?
e
1 i\rw"dbré'uhbl "ary.org.in

ny Art, 278 would be equal to _\ Id

N
e

J__ LERERA ‘.' el
1_1“__&_}_ R DR

2!!‘1 (
2\

that is, to \\s,
n—1

T
()

= (1 af)t” —
: 3‘{ 2 ) r (§)

ul

(Art. 278),

theft 18, to 21_1 M m;?')g_l
'"\ M\, ' T (2)

But if the variables may have negative as well as positive
valucs, this result must be multiplied by 2%, Thus we get
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Hence finally, since the lLimits of @, are —1 and 1, the
multiple integral is equal to

WE 1 N “_y
- [ SFlhae) (1 -2  de,.
AN

282. Many methods have been used for cxhibiting in-
gimple terms an approximate value of I' (»n+ 1) ,u,hen nis
very large: we give one of them.

' ' ' u
The product ¢ #" vanishes when o = an"(l: W hon r=w;

and it may be shewn that it has only oneNhaximum value,
namely when z=»n. We may thercforea\ﬁume

(v
¢ o’ =¢"n sﬁf} ..................... (1),
www braulibrary.org.in
where ¢ 13 a Variable which muqt ]1e betwe,en the limits —

and 4 oo, .3, \\
Ths { oo e f 9T (2).
Yo Q —» dt
mm . 5\
ake the looramt}m]g of both members of (1); thus
\ £
o "'?']Ogﬂ’—ﬂ—nlogn-;-f ............ {3);
put x=n 2 ‘sefx thus
N N 1 ]
O —nlog(ntw)=t —nlogn.......... (4).
‘t by Tay]or’s\ r.\[jheorem
" \' " log (n+ u\-'i": ]orn-}-E———-—m
\\;,, ) . é n 2 {’:’3 + 9’%)2 H
where 8 is a proper fractifon- thus (4) becomes
?'UL
EICRTY T ek
q,/('m U

therefore MO F &E) =t (5);
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{2) nt

therefore | U= ) BE e (6).
But from (3) 0o 200 _g,, 2t
dt x—n %
=/{8n) + 2(1 - 9}¢, by (6). \
Hence (2) becomes PR D
[ et de=e" 0" f “l/(2n)+2{(1-6) t}dt‘
S -—

w "‘.\\
a-ndf e dt=»/(w); thus v

[ e dx—eﬂnn,\/(gnr){w e \g)gm-ﬁ ) ¢det...(T).

0 aulibrary.org.in
But since 1 — & is positive adzrdwles:, than umty, the nume-
rical value off e~ (1 — ﬂ}ﬂdi’ 1s less than f e~ {dt, that

is, less than 4. Hencg we ‘conclude from (7) that as » is
increased indefinitely(the ratio of I'(n +1) to ¢™n"y/{2nm)
approaches unity, a{iﬁ:s limit.

We may abs&ve that in the original equation (1) we
have ¢ and/mdt' ¢ itself; hence the sign of ¢ is in our power,
and we acétﬁ‘dmgly take it so that equatmn (58) may hold,
gupposmg\v"n and /2 both positive.

(éée Liouville's Journal de Mathématiques, Vol X, p. 464,
cmd Vol XVIL p. 448))
~O°
\ 4
Definite Intsgrals obtained by differentiating or ‘mtﬂ.?"‘ a&mg

with respect to constants.

283. We shall now give some examples in which definite
integrals are obtained by means of differentiation with respect
to a constant. (See Art. 213.)
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To find the value off e~ % cog 2ro de,
1]

Call the definite integral = ; then

@= — 2_{ ze™ ¥ gin 2ra da.
or a

N

Oy
Integrate the right-hand term by parts; thus we find
du_ _2%ru, ..(“}‘:
dr a ! ) '\\ )
therefore dlogy =2 v
dr a'’ a\J
L «\
2 o\

7 OO
ww“ﬁhﬁlr‘%f?ﬁ%rary.org.in logu= -~ Ez:—i—-.censtant,
Ny
therefore uzdle o,
where 4 is a quantity,which is constant with respect to 7;
that 1s, it does not OOTQ‘a,iJl 7. Todetermine A4 we may suppose

r=0; thus % b@m&sf e~#" dx, that is, \—flr, (Art. 272)
0

2a
Hence 4 =%"}s’ and J 6~ o v dw = ¥ e .
\ 2 0

. 98.4(},% have stated in Art, 214, that when one of the

lir ita~of integration is infinite the process of differontiation

YF}th respect to a constant may be unsafe ; in the present case

however it is easy to justify it; we have to shew thab
o\ W4 .

\ ) _’. o & -9 pda vanishes where p is ultimately indefinitely small;

it is obvious that this quantity is numerically less than

s fn ¢~%% dz where p, is the greatest value of p, that is,

Wmoo . .
less than o Pis but this vanishes since p, does. Similar

- considerations apply to the succeedi ng cases.



DEFINITE INTEGRATS, 271

235, 'To find the value off g=ie W
0

Denote it by u, then

du { >

= —hax '

il cos ra dx. A
But fe'” cos v dp = ¢t TS0 T]:i__l_ icos L PR &)
therefore f m.e‘}'“ cos rede k. R N

0 B+ ,\ fs
thus d_u __k . Y
b d’}" _'ks + 'f" 3 \;
N

therefore u=tan™" iw’\ifﬁl:;rauljbrary.org.in

No constant is required because # vanishes with r. Thia
result holds for any positive walte of &; if we suppose k to
diminish without Hmit, w&qﬁtam

Sln re

if » be pomtlve \f\fr he negative the result should be — 2—

We cam:wiv determme the definite integral

‘\ ’ f SN 9% CO8 ST d
O 2 d
\\' 0 &
f:m{"i} iz equivalent to
e .
~\J ®sin (r + 8) x “einfr-gx ,
V é[o — dx+1}fo o d;

and the value of each of these two definite integrals can be
assigned, Thus if £+ ¢ and  — s are both positive the result

2 ; if they are hoth negative it is — 3 ; if they are of con-
trary signs it is zero,
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o0 ak
303. In the integralf e-(r”'?’)kd-x, suppose ¥ = xa/k;
- o

. Lo () o
thus the integral becomes 7kl e w7/ dy, which is
Jo ™
known by Art. 286. Thus QO
B _('rg'i'a_:‘: E — _1 VT -l '\"\
fﬂ e a.) dr= Jig f >

\

Now put cos 8 + x/(— 1) sin @ for k; thus the rightshand
member becomes £
N\
3 1 . ok e—2a{cos$-|—\a’(—l).~:':'u':'ii)
cos 3 + 4/(— 1) sin g 2 :.\\.}
2 &

that 1is,

wiww Qhpauliboary .qrg.i 3 \
%bf cos | 24 s B+ 2)—«— i (2@ sin @+

\ Y

S‘Il g-laeos®
2]
= x o N .v‘“ 2 . 1
Thus [ e ( +.-u=)°°"9 cos ’{‘(a:* + a_?) sin 8% da
-~ 0 "\ m n’l
N\
0

N

)
= kil g~ 200058 pog |(2a sin @ 4 —) )
2 i

‘ 2
and f 3 Car I EEUNS {(a:* + zg) sin 3} dx

N . g
.%"" = %—8‘2“0” sin (2&- sin & + §) .

Eulew’s Theorem.

304" We will now give » theorem which connects inte:
gration with the summation of a finite number of terms, and
which is sometimes employed for the approXimate calculation
of the value of definite integrals; the theorem is usually
cal_led Euler’s, though more “strictly due to Maclaurin: see
History of the Mathemationl Theory of Probability, page 192-
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-By Taylor’s Theorem we have _
. r &g " ]a e
Flath)—f@=b" @) +3 " (a) +E;f @)+ .5

change a successively into a-+ &, a+2%, a+3h, ... a+ fn=1)h, »
and add ; then if we put » for @ +nk we obtain the following
result ; O
. J s hkf 7t ks ;g :.‘\:\ ‘
F@ S @=hY @+ @+ 53 )+ 0

T
{

!
where 2/ (x) denotes f' (@) + f (@ + &) + ... £F (& — k),
and 21" (), 3" (2),... have similar meanings:y

For £ (x) put ¢ () ; thus \\\
f:”k ¢ (2) do = K53 (x) +§g‘?’$f}“éfi$’§'§%‘ﬁ(a§5‘?ﬁ'§‘frf

aud, by transposition, NN

?

SVURE e SR SOV N
2 (@)=~ f qb‘({w:)}\r&z:—ﬁch (z) — Equ () —.0ouen (1.
In the SAMBWAY We have
5 () R ) - $ @] 526 @) - 34—
e
k, ...... @),

N\

S0 =1 @4 @} -5 0-Fw -
Q -4

e (8), -
Ll k’ Hir -
3 @)= {# ) =4 @) 536" @) (g 34" @)

and so.on,
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Now from the serles in (1) we may eliminate Z¢' (),
S¢” (z},... by the aid of (2), (8).... The elimination may be
effected thiis: multiply (2) by AA, multiply (3) by AR5
multiply (4) by A%, and so on; then add the results, and
determine 4,, 4,, 4,,... by the equations

1 ¢
410+§—0, '\: .
4, 1 ®)
A1+-§-+—1§—0, ~\
A 04, 1 4
-_— —_— — = } ”‘\
A+ 5+ 3.+|_i o,
e \\
Hence we obtain &

Wﬁ@@amérﬁf;ﬁg(w) de+ 4, {qb(w) :‘¢ (a)}

AN
) Y
) 2

+ 4, {96' (@) — ¢ (a)};}f;ﬁ% {np“ (@) — ¢ (a)} B

Having thus shewn that ¢ (z) can be put in this form,
where 4,, A,, A,,. af¢"numerical quantities, which are in-
dependent of thecyatiable = and of the function denoted by
& (2), we may adopt. an indirect method of determining these
numerical quanfities. Let ¢ (%) =¢"; then

b\
2P @)=+ T =

ea-!-w\__ea e::__gﬂ
-1 &1

T .é.\.:s‘
ﬁ"ih\i“ & — e . , e . P
\'ér_'—1= % +d, (& -+ A k(e — &)+ Ah (& - ¢

so that

1 1
m.—-;ﬁ:‘fﬂ_n‘l‘ll{lhf'{-Aﬁhz‘i'flahs"[_--l. .
" Therefore A is the coefficient of 2™ in the expansion’ of
1. 1. . .
Foi g ascending powers of A, The expansion 13 effected

in the Differential Caloulus, Art. 128; it is there shewn that -
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1 1_ 1 Bk Bh B

FoITRT T e T e

B hﬂu-l
s n+l TTn-1 .
+({—1) __“_]_2’? + .

B, B,,... ave called Bernouilli’s Numbers ; their values are, ag 3
far ag B3,, A
1 1 1 1 AN
= — = n— —_—— = - =_—" { \

.Bl g » -39 30: Bﬁ 497 B': 30 ] 'Bn 66 ", N/
with respect to the values of the Numbers beyond B, iform-
ation and references will be found in a paper by{Myr Glaisher
in the Cambridge Philosophical Transactions; Vol x15.

Thus it follows that of the quantities.%},.,’ 4, 4,,... those
in which the suffix is an even number @re zero, except 4,
which is — 4, and those in which thé& I_aigl%,%c&d Jigmber
are determined by V T

Ay = - 1;':%1“%

We have then the {ollﬁivi;Jg result:
- 1= R\ Ly 1(,, . h
% =3 [ p QI3 @)= @)+ {p @ -4 @]
L ) 1 it £ ‘Ii‘s
‘.\..13..;%{9') @ — & (a)}E+...
By,ﬂ;}"éid of this we may calculate approximately the
valq’&of ”tllle definite integral f & (z) da,

WY

"\ *The result may be put for abbreviation in the form

N\

| o
3@ =0+ [p@de—g6 g4 O3
. 1 e g ® :
—gﬁ¢ (-‘:v")-@"]'vn,

* where C represents a series of terms independent of .
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The series thus obtained for Z¢p (i) will be in poneral an
wnfinite series, and as we cannot ensure that the scrius is con-
vergent the preceding Investigation is not rigorots: we shall
return to the subject in Art. 332,

- ‘n\
As an example of the last formula take ¢ (») =é, and,

&)
b=l Thus wo got by adding  to both sides (<0 -
1 1 1 1 11Oy
i+§+3+ ...... +5:0+]0g£+§-’_ﬂ,1i~)§5§+m
Hence by making @ infinjte we infer that JiMhis Lxample ¢ -
is Buler's Constant: see Art, 268, AN
R

ww . dbraulibrary.org.in EXAM PLES

e b s "’:::‘ » 3
V1 Evaluate j L& +a%) dx Resulft. W+ T
0

&+ AT 2 V3
v 2. Evaluate f :r gcﬁ?{a tan &) da. Result. g e !
}'\‘,i .
V3. Evaluaj;ef a2l g’ o Result, ?1;.
3 ¢ N/ dx w71 1
4, e ——— =~ L
v .[o\(a o 2 ¥ Pz & (ab" + a“’b) '
./,--" QB;\ ;1_;1'0?6 f E;\/ (ta.n ¢) qu = _1_ ™ +1 2y — 1}
'"L:_;;. | 0 _‘\/2 9 og {‘\/( ) *

~9 v

O &VB vaeffq(cot ) dp =‘\—}§ [g+ log {v/(2} + 1]:[ .

. 7. Find the limiting value of ;g-a2 [ " dis when # = o0.
- 0

1
R&S‘u“. § L4



EXAMPLES. 289

: ' * — fir
o’ 8. Shew that {. 005 ax — Cos iz de =loy Fj
i (6

- A

9. If F(m, ]T;) be any symmetrical function of z and ‘%,

<

then ,«\.
o . &\
J d - 5 L de . o 2
4 ! £
b uF (56, _.) gk kw, —) PR g
& & .\ 5
W' 10, If F'li} be an salgchraical po]vnomlal ofs\less than n
dimensions

e F(gyde 1 d _
,Ib =~ |nlde H{ QI‘% 3 c}‘
www dbl aulibrary.org.in

s 11, Prove tha,bf g8 pog | bll]l?)‘dg 247,

R
N
N

m;

g & (1 Gj :7:35 T .. .
= = .
v12. Prove that f o5t i = 72 wlhen ¢ is indefinitely

nearly eq ﬁsvumt » 1t belng a positive quantit
yeq ¥ r q ¥

13, Evaluqtéj “(acos 8+ bsin 0) log (a cos® 0 + bsin®6) do.
XAl

x'\q.l -
S - Result.  2b {log a—2+ - 24/ £os™ '\/_b} ,
%a ( _ b) Ja
\ su 1 reater than b
‘“u pposing @ greater than &, .

AN
§H Shew that

f 1+2ncos ar +4° d.r-
log —

1+ 2ncos by + u*
is equal to log {1 + n) log 22, or log (1 + ) log =,

according as « is less or greater than unity,
LG 19
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15.  Find the value of
50 d"‘
! [emae—cavi=1 _ g=ba—prvi-p] &Z
ta a
where a and b are positive, but « and 8 positive or
negative; and shew that it is wholly real whens
o4 2
a 5" Oy
A\
« \
A

* N\
v17. Prove that [ de_ log (::c + %) = rlog2.

A

" 16. Prove that ] eot™ {1~ + a%) dz = ?
SO -

o 1+2°
o . AN
A8, Trom the value of [ %izdm d%};dﬁce that of
LIEAENS

ww.dbraulibrary.org.in

o &)
sin ag\ ™
f (—’v) da
o\ @S
'\Q. s ]
Resutt. The two integrals ave equal.,
% N

v“19. Prove that J (g&—;-tibx)g de =log 5261)-3;)(;[25)3”
04

£§ N

a7 20, Shew that\T V(’T _I_l(;%fd‘c .

N

w21, Shﬂeéf'%hat[ (%= e do (b—a) v

A8 Ellis, page 44
NN

,&w (Selutions of Senate- House Problems, by O'Bricen and ™

V?Z Shew thatf lorri_j—-;-l die = £ o
\/ZB Prove thatf o 'da- Iocr?—n, and reeoncile with
logs " = n
q 71
this equation the vesult of transforming Wz by
o logm

rmaking o7 = 4.
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n

.
24, Shew that f §in"6 df = Vi 1.2_).
r(*s)

21— ayr? d.r' ' T (m) 1
w25 S
Shew that J‘n (5_!_ ) T T{iYm JCN (b—!» QB" )

3 cost 1§ sin™ 0 40 _re I‘(q}z) ‘1
o (acos™8 + s G M m) a7 b

|_.|

[

&

26, Shew that

tan™ & d¢ ) 1
cos'd -+ bsin®d L’\cc)sémr Lk bﬂ ’

v 2? Shew that f
loa

n being less than unity. wxyw dbraulibrary.org.in

™ .

™ s N {I‘ (_?i') 2
w8, Shew that | sin th? = z) 27 .
Q (a- *'BGOS 9) I (ﬂ) 2 2 ;
\"\ (@ — 37

(}\\.: a1
VJQ. Shew that} i dmﬂ = me

WNSE L mw m
(1 —2" msm -

N
x:\bt’
) \Sﬁ that Cdw i
oW L 1+c.1:) A—&)" (+o sinnr’
x..Q’{'

”\s&f‘)l Shew that [ sin mms—l{i—cfd =0, or

\/
according to the values of a and ¢,

»'zhl:i

82. Trace the locus of the equation

%mé’ cos Bm
o

192
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33. 'I'race the locus of the equation
% =f log {1 —2¢™cos 8 + ¢ d0,
0
where w=sin".
%

34. Trace the locus of the equation o\

: f”; @ cos 8d8 (‘
Y=] Y@+ 2xsin 0 +1)’ R4
2 XN
in which the sign of the square roofistalways taken so
as to make the quantity in the E@’;}ohﬂinator positive.
o ‘S 3
W:QI Fbra lﬁhﬁ‘@'x"t}h&t‘g.in O

™ T ™y

2{4 . ; N T
gin x sin” (sinag®in ) dedy=— — - -

fofo ( R y)dzdy=-7 -3

N

/ 36. Compare the resgﬂ:s obtained from

At e
\\1 f sin ax ¢ du dy,
N e Je
by'pé;r:'ﬁffming the integrations in different orders.
Y

o a1 b
v 87 J5d the value of f ¢"® # gy and hence shew that
R o

N

W\ -
N 1 2 I8 gt - . o 2 % ot ]
N o e 52 Ba a7 AN
e (—34'“'&)3“2”253“’:'_{“:5{ %_”__2 o BBy,
Q" o 4e Jo \&* &

\j/ 38, Shew that
‘_{”(1 il —¥) T
j.v’(l 5 s)dwdy———(——l),

the integral being extended over all the positive
vah;es of  and  which make #* 4 4* not greater than
unity.
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" 39, Shew that

it
F]

e

the number of variables being #, and the integration .
being extended over all positive values which mgke) -

@+ + 2+ ...... not greater than unity. O
40. If A+ Ao+ Ap + ..o =F(@), o 3
and @y + Q5+ a7+ =F(@es
prove that A, + 4,a2" + 402" N
.’\ w

A

wwwéd bli&}i.u library.org.in

- L [T 0+ FOI 70 gff a0 - 4,

Where 1= we® -1 and gz~ V-
41, If the sum of the serieS a,+ae+az"+ . ... can be

expressed in a finitelform, then the sum of the series
a? +a e+ a N can be expressed by a definite
integral, P &V’EXhiS, and hence shew that the sum of
the squar ﬂé‘tﬁe coefficients of the terms of the expan-
~sion of 1 )" when n is a positive whole number,
may be'expressed by
PN\
T g pr
\\ 2 -——I 2 cos®™ @ cosnf df — 1.
\, . T Jo
%jféé}\\Shew that
RO TS A
O T S R e S T
\'}3 Shew that

i

fg ¢ (sin 2i) cos & dx = J §¢ {cos*c) cos @ da.
0 0

Liouville's Jowmal de Mathématiques, Vol. XVIL
e 168
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" ot
L/» 44, Shew that 1 —-Eﬁ +‘§§1§“ ......
2 [3 :
- — d -
'?TJo cos (@ sin y} dy
7 45, Shew that ) >§
® —a™ ® n—m—1 -0 T (“\\ )
gt le~dy| ¥ e " dy = .\ I
S0 Bt aEsin ‘-; x\g
0
oy O'\
2~ 46. Shew that ‘ i\'\'
® —(.1:"21:05294.‘93 iné@) COE‘; g . \?b ) ;
e 20 T ) sin 29,2\04—2 cos 28% day
o s & #2251 ]
SO
AN
www.dbraulibrary orgin — -n';“ P C*:’)S :’ﬁ%-) .
81N ¢ ’
N

sy W Y o - ™
¢ being comprised b;&etﬁc\(fun the limits 4 i
AN

O\ !
47. Slew from Art,\géﬁ' that ! log T (&) dw is cyual to the
\. J &
| n-1
lisuit wl;,e;\n isinfinite of _ log {r (n) (27T a-s.é-m}.
>

7 S/

48, Hqugfﬁy” the aid of Art. 282 shew that

{'\(/ #41 1
&w f 10g1—‘(9;)d:z:=a:10gw—w+§10g2'ir.‘
/“\\.z
VO
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Z ’\ K
CHAPTER XIIL A\
N
7 ~\"
EXPANSION OF FUNOTIONS IN TRIGONOMETRIGAL SERIES.
(N

. 305. THE subject we are about~te introduce is one of
the most remarkable applicationsfct '8, 5,
and although in an elelg)ental-y'worgi It E;l‘%;[?}%%égént,g %ﬁlly
an outline of the subject can e Fiven, yet on account of the
novelty of the methods, and{the importance of the results,
¢ven such an outline may'be of service to the student. For
fuller information we may refer to the Differential and Integral
Calculus of Professor’De Morgan, and to Fourler’s Théoree. ..
de lu Chaleur. (Rhe/subject 1s also frequently considered in
the writings of }’msson, for example, in his Lraité de Méca-
wigue, Vol. L pp643...633; in his Théoree. ..dele Chalewr ; and
in differcgt @femotrs in the Jowrnal de I Buole Polytechnique.
The student may also consult & Memoir by Professor Stokes,
in the'th Vol. of the Cambridge Philosophical Transactions,
a oir by Sir W. R, Hamilton, m the 19th Vol. of the
Tramsactions of the Royal frish Academy, and a Memoir by
\’.Bfofessor Boole, in the 21st Vol. of the same Transactions.

506. It is required to find the valucs of the m constants
A, 4,,4,,..4,, so that the expression

4, sinz+ A sin 2+ A sin 8z + .. + 4 _sinmz
may coincide in value with an assigned function of & when =
vil

has the values 6, 24, 86,...m#, where &= it
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Let £(x) denote the assigned function of «, theu we have
by hypothesis the following m equations from which the
constants are to be determined,

fi@)=4 sinf 4+ 4,8n20 + 4, sin 38+ ...... + A, s mf,
F(28) = 4 sin 204 4,sin 48 + 4 _sin 68+

...... + A, sin 2md,

F(mt) = A sinmb+ A0 2mb + A sin 3md+...... A+ sin mma

Multiply the first of these equations by sin rf, the second
by sin 276, ...... , the last by sinmré; then add s vesalts.
The coefﬁment of A, on the second side will thg‘r\ﬁc

sin #@ sin $€ +sin 200 sin 258 - ... .. + sm B sin ms;

we shall now shew that this cocficient isZsm if & be different

from #, and equal to § (m + 1) wheng ﬁ\equ:ﬂ to
MAVATR dbrauhbrary org.in N\

First suppose s different from 7\

Now twice the ahove coefﬁotent 1s equal to the series

cos\r—s)9+coa2{?"—-)9+ ...... +ecosm (r—s) 8,
diminished by the seried’
cos (r +s~;6+cm"’2\’; +8) b+ ... +cosm {r -+ s} O

The sum of\ tx first series is known from Trigonometry
to be equal toy)

.‘\

o sio (2m + 1) fr=sif_ sin (r~s)8
Oy 2 2 ,
\\” 2 sin ’"—"’2-315}

N - .
~J sin I(? g — %’} T - s) 8
" that is, to . 2

2 sin (T—_g'-g-)—

=

This expression vanishes when 7 — s is an odd number,
and is equal to —1 when r—5 is an even number.

The suin of t-h_e second series can be deduced from that of
the first by changing the sign of s; hence this sum vanishes
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when 4 s 13 an odd number, and i3 equal to —1 when #+ 8
is an even number.

Thus when s is different from », the coefficient of 4, is
ZEeTq,
When s is equal to r, the coefficient becomes

sin® 8 + sin’ 28 +-...... -+ sin® mrd, R

that 18, ?-g — % {cog Zrf 4 cos 418 + ...... + cos 2»1?-94}”.3«,

And by the method already used it will be"sée}i that the
sam of the series of cosines 18 — 1 ; therefsre‘the coefficient

of 4_is & (m+ 1) AN

. <!
Hence we obtain \

9 “y.dbr aulibrary or
A, = e {sm r8 f(8) + sin 2Tﬂf(7€}+ ...... + sin mrdf f%nﬂ)}

T

and thus by giving to r ing ‘sudcession the different Integral
values from 1 fo m, the coasﬁants are determined.

Now suppose m.‘lso increase indefinitely, then we have
ultimately \\~..

O 4. = %f’rsin rof (v} dv,
W o

3

Andag¥ (x) now coincides in value with the expression
G
\J A sinz+ d,sin2e 4 ......

fot: an infinite number of equidistant values of # between

~ :"Q hnd #, we may write the result thus
\™

Sfla)y =~ 2;" sinnz l- sin ne f (v) dy,
T G0

where the symbol 3° indicates a summation to be obtained
by giving to n every positive Integral value,

307. The theorem and demonstration of the preceding
Article are dve to Lagrange ; we have given this demonstra-
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tion partly beeause of its historical interest, and partly because
it affords an instructive view of the subject. Wa shall how-
ever not stop to examine the demonstration clogely, but pro-
eeed at once to the mode of investigation adopted by Poisson.

308. The following expansion may be obtained by ordi= N
nary Trigonometrical methods :

N

. (\A
l—g—m. =1+2hcosw;x)- O
1-2hcos 7‘_—3 / + A N
- L
+ 2A% cos —EM + 2#’cos ?_nr_(?}_,m}“}_{_ ...... (1},

h being less than mnity, so that the seri ,evs\'g'convergent.

Multiply both sides of (1) by ¢ @, gnd integrate with re-
o SREE b Bt he Tinits — ¢ and’l; also make % approach
to unity as its limit. On the Jight-hand side the different
powers of & become ultimatclgsimity. The nmmerator of the
fraction on the left-hand side, will nltimately vanish, and thus
the integral would vanish if the denominator of the fraction
were never zero. Bub \*a‘f' 2 livs between —1 and I the term
{1 - N
cos W‘—”;—-@”—) will ;{é\émhe equal to unity during the integra-
tion, and thus ths denowminator of the fraction will be (1— 4,
and will tenddowards zero as A approaches unity. Hence the
integral will'not necessarily vanish; we proceed to ascortain
its value.U'Let v~ 2=z and b= 1 — ¢, then

< T A=) dp _ ]g (1+Rjdblz+2)dz

¢ .\’: N 1— Qh COS“?L@{-:E + ;"2 g'z -+ 4'h Sinﬁ'_g_z

N
\

\ 3

¢

Now the only part of the integral which has any sensible
value, is that which arises from very small positive or nega-
tive values of z; thus we may put

sin =2 = 1%
PR Y

and P e +2) = ¢ ()
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and the integral becomes

Cod d:
g(1+?a-)¢>(w)] — =24 )[—;a—
) 9’ + JE .9'2+_'32_
_ @)z
gt \
Suppose «and — 8 to be the limits of z; we thus get.& N,
2!56 () 2 % o G\
for GGl Q)

Hence, ﬁncxlly, when g is supposed io vaméh we have

2i¢ (). Tlerefore if x lies between — anf\¥,v
b= swartsf 9o o=, o),
W dbr auhbral ¥- org in

If however w=1 or -/, then the integral on the left-
hand side has its sensible part wheén v is indefinitely near to
[ and —1; we should then hawe,fo perform the above process
in both cases, but the mtegra.l with respeet to 2 would only
extend in the former casé™Mrom -8 to 0, and in the latter
from O to «. Hence ifistead of 24 {{) on the lefi-hand side,
we should -have { {ZI& —D); and instead of ¢ (#) on the

left-hand side of\2) we should have S 3 ) +5 q’)(— ). Thus

we have det@rmmed the value of the right- hand member
when x lies*between ! and — I, both inclusive; its value in
other pasés can be determined by the method which will be
exrﬂ,@eii hereafter in Art. 321,

809, In the same way 28 the result in Art. 308 is found,
we have, if we integrate between 0 and [,

¢(w)=2—gf¢(g) dv+A—2°°J ¢(v)-cos""‘—”(”T@dg ...... 1);

this holds if = has any value between € and I; but when
#=0 the Jeft-hand member must be § ¢(0), and ‘when z = ¢

the left-hand member must be § ¢ (). Thus we have deter-
mined the value of the right-hand member when # lies
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between 0 and I, both inclusive; its value in other ecages
can be determined by the method which will be explained
hereafter in Art. 321,

Similarly

Y AT L2 PR

this holds for any value of x between 0 and I; bup \wLen
# =0 the left-hand member must be 4 ¢ (0), and W hcl’r w=1
the left-hand member must be § ¢ (I). "‘\ \

From (1) and (2) by addition _ ~~\\’
é () =lf¢,(9) dot 3 2 5% ooy M2 ‘”J g\“"; $ (6)dz...(3).

ww.dbrifilfprholder foin any value of 2 bat“ een 0 and , both in-

clusive.

From (1) and (2) by subtay}w;étion

{

This holds for sy \aalue of & between 0 and 7 hoth exclu-
sive; and When\:&\— 0 or I, the left-hand member should be
Zero. O

TN W i ,
¢ (%) Egﬁm o [ sin @ Gl dy...... (4.
Jo

Equat\iéﬁ '(4) coincides with Lagrange’s Formula,

}%e\may observe that either of the formuls (3) and (4)
may be cleduced from the other. Buppose we take (3) and

Wnte sin = T qb {#) ingtead of ¢ (x). Thus

rn\‘
) 3

. WL 1%, @
stn —~ ¢(w)=zfosm%¢ {v) dv

2 nmwx 4 wwy . W -
+53%cos" = | cos— ;- sin — ¢ (2)
™ i 0 i I i
T Y w1 . (k4 Uwe 1 (n—L}my
Now cos =~ sit — == SLme - LiwY,
8 3 Bin ] = 3 K11 E _ Q 8121 ____g_ 3
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and therefore it will be found that the result may be exhibited

thus,
71'93
¢ (@)=
—- i
%f {“"S—*(ﬂ 77— eos (?E} [ sin 2 o) an;
— .\\\'
o o0s P con OLLDTE g iy 23 T

and then by division by sin —f we obtain the formula ( )R
"\ N
For another investigation of the fundimhental theorems
we may refer to Chapter XVIIL of the Tregtise on Laplace's
Functions. We will now give some eX{mples

310. Expand @ in a series of Wﬁﬁdb"ﬁiﬂébfﬁ’iﬁlﬂhﬂ(-ﬂj of
Art. 309, and suppose [ =7; then
"ucos ny | sin ww

j'vsmm!dv-w—w +
NN ”

therefore f v eIn ny dv\_ if # be odd, and —~ 1f 7n be even.
Thus \ \\
z= {siﬁ,x"— dsin 20+ 1sindz—fsinda+ ...}

This 'holds for values of = between 0 and #r, and as both
gide "&msh with 2z it holds when #=0; and it is obvious
thab%f it holds for any positive value of x it holds for the
cor.respondmg negative value; hence it holds for values of &

xbetween —ar and excluswe of these limiting values.
a \ w

\\3

311. Expand cosz in a series of sines. Take formula
(4) of Art, 309 and suppose I =; then

foosvsinm:dw=%f{sin(n+ 1} v 4-sin (n— 1) v} do

1feos{n+1)v cos{n—1) v}‘
21 w+l " a-—-1 [’
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L
therefore [ coswsin nw v =0 if « is odd,
0

2n ., .
=T if » is cven;

therefore N\

2 (4 . L+{=1 A
coS = — & sin Zx -+ 8 sin 47 + ...+i—+2(— Shonslo nadaiEn
- 13 15 0 =17 N
‘ wid

Thig helds from x=0 to ==, ecxelusive of rlm @ limit-

ing values. 2\
2 '\'

312, Suppose we endeavour to expand s sc?‘msmnt quan-
tity in a series of sines. Denote the cofghant by ¢; then
putting ¢ for ¢ (¥) in formula (4} of At’f,\ )9, and Q[lppJ‘-‘.ng
{ =7, we obtain

db Ib 01 '5 5'
www . dbrauli taréz_;@ mq,+—=;m i&+%'ﬂﬂdf +.

o 2

Hence dividing by ¢ wg@rbta.m
S 1 .
i 3111':9:{&5 5N 32 +§ s1in Ba +...
0O )
This holds fr&@\ﬁ =0 to =, both exclusive.
If we E\{i}}'%—y for @, we obtain the following formula

whichsl(fﬁ?i;from y=— %T toy= %—, both exclusive,

N,
R o1
A\ I=cosy—gcosdy4—500333;-—...

-4

\/ 313. Ezpand z in a se_ries of cosines,
Take formula (3) of Art, 309, and suppose = =; then

veIn MY cog ny
[vcos Ny dp= —- " T
K B n

T “’ B
therefore f véosavde=0 if n be even, and — f§ if n be
B A
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odd; and dev:% ,
0 )

T 4 1 1
thus :E:E—';‘_‘{COS$+§§GDSS$+?0035$+......}.

This holds from = =0 to z ==, both mcluswe

\
If we pub w= i — 4, we oblain the following formlsla.

which holds for any value of » between —g and\ 2 both
mclusive, ’ m\‘

s o

y = 4'({av,m_,r 3281]13_j+_1261n§:{, i

#%¢

314. Expand ¢* in a series of \«?’i-gi‘?,%ibrauhbrary.org.in
We shall obtain A o

&Y
2 am 2 ‘4 -

— cos nwet ) 81 R,
i Mz‘( }

This holds from = <\0 to # = a1, both exclusive,

o e

¢

£

2§ . .
315. Expaﬂd\\e{”}m o geries of cosines.
We shall gbtain

A \,/z 2 2’ __
¢ e — 1 22 Gw COB 7TE 1
NP — ® - COS .
{\g o E a'+n'
@i@' holds from @ = 0 to z=-r, both inclusive,

~\" "3(6. Expand sinaz in a series of sines, ¢ not being an
”\ “integer. ;
A\ .
We shall obtain
reinar sne 2802z 3sndx
% sinar I'—a¢ 2—a @ —a
This holds from « =0 to 2=, the former inclusive, the
latter exclusive,
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317. Expand cos ax i a scries of cosines, & not being
an integer.
We shall obiain
meosaw 1 acosx  acosy
Qeinar 20 o —1% af-—2¢ 7
This holds from @« =0 to « =, both inclusive, R\,
\/

318, Expand ¢® —¢~%F in a series of sines, ;‘u;:

= . 7 gu'n‘ — g L &/
Here f (e2® — e~ sin ny do = — ﬁz—g COS R,
0 N

Theref: et —e*®  ginxe 2 gifu%fc . 3 sin 3z
T T — = 5 — s < — asena
R e e E T Pr @ (e St a

s,’

vww . dbraulibrary.org.i
]\*/jxpa,nd R S “i,‘f*xrm a serics of cosines.

'S
\
®

'"' & I t:_ﬂ"l' —_ B—a-.vr
Herc f {err=v 4 e‘“"fci"{} ’cos avdy =2 )
9

*

J N o + nt
™ . ‘M . £ET — g oW
0 %\ i
w{ B -a) . gmatr-8) ] cos x| cos e
Therefore s=N2—— 1~ Il G T
,20 et — gTom 2a* 12_1.0}"'-)2_{_@2

»

2{) Tt may be observed that from the formulse which
ha@heen given others may be deduced by integration; and
Jungeneral tha series thug obtained are more rapldly conver-

~\ \gént than those from which they were deduced.

} For example, take the formula for cosz in a series of
sines given in Ari. 311; integrate, thus

" cos 22  cosdx  cos Om
— 8in & = constant — S

4 1.3~ 3875 5.7
By puttm =0, we find that the constant is 4. The resulb

agTees wib what we should obtain by expanding sin® in &
series of cosines,

sem
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As another example we may take the last result of
Art. 313, and integrate both sides with respect to y The

constant may be determined by putting % for y: thus

¥

2

321, We have shewn that the formula (3) of Art. 309
holds for any value of @ between O and [ both inclusive’;
it is easy to determine what the right-hand member is equal
to when = les beyond these limits, Suppese z pofitiye, and
between ! and 2I; put # =2/ - &’ so that & i{léss than /,
then

Ul

4 1 1
T o {cosng,coa,Sy—f-?cosSy-...}.

cos ™% - cos (2?17_ nay Smrm" )
7= 7 . :,0{{' 7!

therefore the value of the right-hand-miember is ¢ (). Next
suppose « greater than 2I; and swhposebbscaidaby 30Y.th @
where & is less than 2/; then 3§ .°

AT L) nma’
cos 'T‘s‘,‘—“COS f'g—,

~ *

so that the value is thegame as it would be if 2" were put
instead of &; that jsi\the value is ¢ (&) if 2" be less than
and ¢ (2 — &) \@b’e greater than [.

It is chvigug that for any negative value of 2 the value is
the same ag-for‘the corresponding positive value.

Simi@ﬁl} we may shew that if « is positive and =2ml + &,
the valaerof the right-hand side of equation (4) of Art. 309 is
the same as if o' were put instead of @, and is ¢ (') if & be
less than 7, and — ¢ (21— «) if « be greater than I Aud for

Jlegative values of = the value is the same numerically as
N “for the corresponding positive value, but with an opposite
\/ sign.

322, It may be observed that in the fundamental demon-
stration of Art. 308, we suppose that when A approaches unity
as a limit, the expression

n (v — ) .

fh" ¢ (v) cos — T

T.LC. 20
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may be replaced by
jqb (v} cos wr (o~ ) v,

{

however large = may be. We may shew that no ciror arises
from thig supposition, by proving that the latter integral M

vanishes when # is increased indefinitely. We have A
. &
nw (v— Ib(v] . nm(p—ux) AN
j‘f’ (v} cos (o=x) do == ( L sin ( : O
i T { >
l Ty — i)

~ o [ 4 o iR Y=,

TR A
which shews that the integral on the left-hiahlside will vanish
when » is infinite, at least if ¢’ (») be ngf infinite.

323. We have not yet alluded dd&one of the most re-
markable points in connexion witidhe formule (3} and (4) of

o \[ra’fhlﬁgﬁ!n.y{,pgﬁmse formulae ¢ (A need not be u confinuous

g\
N\

\ 3

unction ; “for“czample, from ®= 0 to =¢ we might have
¢ (@) =Ff (x), then from &=w to x=> we might have
¢ () = f, (=), then from F=>b to m=¢ wc might have
¢ (#) =7, (@), then fromdw=¢ to w=! we might have
¢ {x) = f, («). Thefarmula (3) for instance would still be
true for all values g:)"f;} between 0 and I juclusive, as is evident
from the mode ‘af\demonstration, exoept for the values where
the discontiniity occuis. When for example » =@, then the
value of theyright-hand member wonld not he Ffola)y or f, (a}
but 1 [£¥a) +f, (@) If thereforc for w=a we have
I (e 30 (@), tHe fermuls holds also when @ = a.

. \%:ame writers adopt a mode of cxpression for such a
{rz}v'ﬁmls‘u as (3) of Art. 309 which draws attention to the pos-
Brble discontinuity, Instead of ¢ (@) on the left-hand side

J they put § {Plete+o(x— €}}, where e represents an inde-

finitely small positive quantity. Thus when there is no dis-
continuity the limit of ¢ (v +¢) is ¢ (z), and so also is the
limit of ¢ (¢ —¢).  But suppose that when 2 = ¢ we have the
discontinuity just indicated; then the limit of ¢ (a-+6) is
J; (a), and the limit of ¢ (@ — ) is £, (a).

324 Tind an expression which shall be equal to ¢ when

x 1ie§ ?Ut’“"*eﬂ 0 and @, and equal to zero when  lies between
@ and L
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Take formula (3) of Art. 309. Here ¢ (v) =¢ from v=0
to v=uga, and then from v=ga to v=1 it 18 zero; therefore

{
j Y dy becomes e [ cos Td’u that is —E—sm%“-

4 . L
therefore the required expression. is
%_}_2_6 81 @ 7E+}'Si 23{_})0 .21'{? A\
R PR TR T TEE T ! Oy

1 . Yma_ 3ms O
+§ S —— €08 —— +}2

this will give £¢ when 2 =a.
Or we may use formula (4) of Art. 309, Th

@ T cl . N
f sdev — (1 —cig%r),

W

and we have for the required expression
wwy? dbraulibrary.org.in
26 { T e 1 Zarat x T

vers“Z— SIDT-"- VOrs —— 3‘ 81 *- T

‘;I_~1’ Sore sin 3_7m. + ]
5 vers —— LIRS 3

this gives 0 when z= 'Z &,ﬁmd tc when 2= a.
325. Find aal\étpresswn which shall be equal to kx frora
. i
=010 m:i'a:nd equal to & (I - a) from @ =7 to x=1

2
Ht.re'\"
7
fq’a\}) os—dv—fkncos-—dﬂ+fk (t—w) chodv :
50"
e N
CNYORP(L L w1 nr 1 EP . . nv-)
\ -_—?{2—,”5131-2»+nf;—wcos—2——-ﬁ}+?;(smnw—hm_2‘
. cos .
H"{ 1 . am  cosam 2}
—smmr-—sm———r——g—*—,,-
T ln 2n 2 nww nhar

kP 1 nar
= 12 CO8 -2——005?171'— 1}.

20—2
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« . 4
This is — 'I:P,
>
other case, and

when n is of the form 4+ 2, aud 0 in every

0
[T

' i 25
Moy = 1 N T &
fa(p(@., i Fc.]“vd?,i-k‘li G=nd=gs
2 A
thus the required cxpression is O
BL_BEL a2y b ons 870 1O
AT et T ES T

If we denote this by », then from & = fﬁ» =41 both in-
clusive ¥ =k, and from z=3I to ax¥ both Inclusive
y=k(l—a); for valucs of x greatershan / the values of g
recur as shewn in Art. 321. Thus(the value of y is the
ordinate of the figure formed hywmgdasuring from the orgmn

ww dHgadiblengiiig stong the axis of w'to the right and left, and

(N tesult B

\

) Y
 §

drawing on each hase thus objdined the same isosceles triangle.

As another example (we may propose the following:
find a function ¢ (z) in$erms of sines which shall be equal
to = from =0 to >4, then be cqual to a from x=¢ 0
&= — a, and thep-be ‘equal to 7w —ax from z=w —xto a=m

The result 15> )
4 [\ | 1. . | .
¢ (x) = P asing +gsin 3usin 3:1:-}-553111 B sin Bx 4 .uup
this ’is\';(}\i’e from & =0 to £ = 7 both inclusive,

,(i“fe may give the following v
Jgeometrical interpretation of this : ¢

Let 0.4 CB be a square, such
that OA =, and OB=w Take
O for the origin, OA4 for the oA *
axis of @, and OB for the axis of
¥, and let the axis of 2 be at right angles to the axes of @
and 3. Let a pyramid be formed having QA OB for its baseé,

. - m o T
and its vertex at the point o = 5 Y=g 7= then the fol-
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lowing equation represents the four faces of the pyramid
which meet at the vertex,

4, . . 1. . 1. . .
7= {smmsmy+3—,,sm S sin 3y + g3 5in o sin Sy +...].
By the made of vbtaining the result it applies to that part

of the surface for which y is less than ;—r; and then by 1{1‘-\

spection we see it applies to that part of the surfacg Mor

which ¥y 1z between g and =, We may convenj.eﬁ’il:}y put
s,

’é+ " for w, and 1+ = fory ”‘\

The student may venfy the following examples.

If = be numerically less than o the\'e)}‘.pression

Sﬁzw {cos (2?1 +Y) ’ Fbrauhbl ary.org.in

= 2 e - 1

is cqual t0 ¢ — @ if = be pomtwe and a + & if # be negative,
FProve that for va,lues of & between — 7 and 7 inclusive

L) cos 2z cos 3w
1Ncos @ty — g b
This may, be obtained from Art. 310 by integration; or
from equatten’(3) of Art. 309, Integrate this result : thus
0 _ww_ o 2 sinde
A 1212 2 3
+\Find an expression in terms of sines which shall be equal

(b sin ™% from &= 0 to @ =g, and equal to 0 from z=qa to

o

[+ 3
@ =4, The result is
9 sin a sin @ sm 21 sin 2»  sin 3« sin 3z
R — 9% - 71_2_3"9&2 el
Find an expression in terms of cosines which shall be

equal toq—;—-x?_fmm z=0 to x:%, and equal to 0 from
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@ = %T to = The result is
-:_rj + 4 cos . P8 3x+cos5.s~;
12 3 5

5 leos2z  cosdr  cos Bz
NS ©

326.  Other formule may be given analogous tg those in

Art. 309; we will here investigate some. We havedbyiirt. 309

1 1t -1 . 242
¢ (w)=2—3f0 b () dv + % 2;”]0 & (2) cos ”“”"—“:;3‘”’ do...(1).

This holds when # has any value hébween 0 and 7; but

when ® =0 the left-hand member st be 4 ¢ (0), and when

. @ =1 the left-hand member muspohg 1¢ (). In the same
/v dbsmdibi-asythis tasult was obtainedAve may also prove that

1 ¢ ¥ e 'y
2¢ () =§3f0 ¢ (v) dv +%2§°’0f; ¢ () cos °7 (v =) dv...(2).

1)

T_his holds when g has any value between 0 and Z; but
when & =0 the lefi-band member must be ¢ (0), and when
# =1 the left-h (m’embcr must be ¢ (7).

Subtract (B, from (2); thus

: D1, Cn—Da(o—s)
IR focﬁ(fu) cos LT g, 3.
kit holds when = has any value between 0 and 7; bat

whieh " = 0 the left-hand member must be ¢ (0}, and when
\..(1:;‘:: £ the left-hand member must be £ (D

\; ~  Now in the same manner as (3) was obtained, we may
v/ obtain the following result, starting with v+ instead of
¥ — 2,
; I —
0=737 ['¢ (o) cos 21 Vet g......
»

This holds when & has any value between 0 and {; but
when 2 =0 the left-hand member must be % {0), and when
z=1 the left-hand member must be — 3 (1)
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From (3) and (4) by addition and subtraction we obtain

¢ (x) = % g 'eos @&__g}jﬂ.f :('f, (&) cos (@n _2})73’_ 22en(5)

b = 5 sin I [ ) in BT 056,

These hold when 2 has any value between 0 and [ in\-:\
clusive, except that when # =0 the left-hand member of (6} -
must be 9, and when @ =1 the left-hand member of (;‘g’)., st

be G. R
As an example of (6) we have \‘
Tz . o= 1 3z 1 . 82N\
8. =310 4 — EE s1n 3 +B—£ a1 3\\,,.;

W

- - . O\
this coincides with the last result of3dyts 313, , brary org.in

397. We shall apply the folmula (5) of the preceding
Article to establish a remarkabie theorem first given by Johu
Bernoulli.  Let there be sm{'mirve AR the tangents of which
at 4 and B are at right apgles; let the involute of this curve
be formed beginning &3\, and denote it by AC; let the
involute of A€ besformed begiuning at €; and so on con-
tiually: then théailtimate figure obtained will be a cycloid.

Lot s he ¢ghelength of the arc of the original curve mea-
sured from (o any point 2’; let p be the radius of curvature
at £, and’Prthe inclination of the tangent at P to the tangent
at ANLeE p, be the radius of curvature at the corresponding
poinf of the first involute, p, that of the second involute,
p,that of the third mvolute; and so on Then £ cxpresses

.. (the inclination of p, p,, p,-.- to the normal of the original
Vourve at 4; and 6 also expresses the inclination of p,, p,,
pgr+- to the normal of the original curve at B. Moreover
Per Pgs Ps»--- vamish when 8=0; and g, py peoees vanish

when €=g.

ds 8
Now P= g4 and p,=s; thus p1=fopd9.
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™

2
Similarly, o= pdb,
<8
[}
o~ [ pb,
0
3 OV
pﬁfepsﬂ’-?, ’ } ’
and so on. 4”}‘.

Now in formula (5) of the preceding -\\t‘nflc suppose

[=7 55 then siuce o is some function of 8, Wb h ave

p=A10036+Ascos39+55‘q’9\359+

wliera
1110

N
TR Y
Thus 3 )

"

=4, 31119-{— A Sa.n39+ d,sinb6+ ...
py= A, cos ;‘5{3;«%—:148 cos 36 + %Aa cos 50+ ......

= A sa‘n!?-i— | '51n3t9+— A, sin 58 +

,\/

...........................................

}\"‘eesdmg thus we obtain, when n i indefinitely large,
’\ =4 sinf, or p, =4 cosf;
}éﬂ'd these equatlons represent a cycloid; see Art. 105.

It should be observed that the formula whlch we have
used for p assumes that p vanishes when 8 =~ 5 7 : see Art. 326.
But this does not re*tll} affect the demonstration; for b)’ the
natare of the problem p. really does vanish when 8 = §, and
therefore a formuls for o like that given for it will hold,

O\
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and the process can then be continued by which p,, p,,... are
successively obtained. In Art. 102 it is shewn that the in-
volute of an Equiangular Spiral beginning from the pole is an
Equiangular Spiral ; but close to the pole this curve forms an
infinite mumber of coils, and this sipgularity renders our pre-
sent investigation inapplicable : thus the apparent contradic-
tion between the result obtained in Art. 102 and the theorem.
here investigated is explained. \ A

We may next examine the nature of the result whenvthe
tangents at the extremities of the original curve{are not
inclined at a right angle. Suppose these tangent§’$0 be in-
clined at an angle ¢; and put a for { in thedormula (5) of
the preceding Article, Then we have ’

, 7:9 371'9 :’\%’;ﬂ'e .
p=d,eos 5 + A, cos P fji{\cas 5, T ;
and by proceeding in the same S ad el e S58IE at

the result R

af w7
o= oo g (W o = ksin

where L= 4, (2?:5) .

If & were ;c..\ﬁ}n:e:te quantity, we should thus obtain an
epicycloid‘iﬁ\’d Zi“s'greater than ;—T, and 2 hypocyeloid in which
the diargeger of the revolving circle is less than the radius of
the\,&"e\d circle if « is less than :Zr; see Arts. 110 and 111;

and ‘this is the usual statement of the results. But 1% will
“be observed that % becomes indefinitely great in the former
“case and indefinitely small in the latter case; so that in the
former case the radii of the fixed and revolving circles must
be supposed to increase indefinitcly, and in the latter case to
diminish indefinitely.

328, Suppose q, b, and & — a to be positive quantities.

]
Consider the double integral f f cos ux ¢(v) cos uvdudy,
¢ o
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By integration by parts we have

[0 coswap= 10 _ [0 sinus

H

therefors
{b ¢ (v) cosuvdy = ¢ B)sinub _ ¢ (a) sin e
| ¥ 1 \\,
AhopS . . X £ \‘.‘
-] f#(ij_lw o, O

Thus the proposed double integral becomes | ,

w 0 w0 . RS
o) [ SBvesmab b b f cos ux g .
Jo % o 0
7] : ..’\\"
oS i
[ [Tesnrd Gy g,
ww dbraulibrary.orgin  Jo ., o)

p

The first and second terrys, May be easily found by
Art. 285, In the third term(we can change the order of
integration, and apply Art. 885 to find the result of integra-
tion with respect to . We&hail then obtain the following
results, assuming @ to hewpositive :

L Letwz be gr(;a.‘t@‘ than b. Then each of the three in-
tegrals vanishes, \\

II. Let .jq:l?g between @ and b.  Then the first term is
equal Lo wd)fbj ; the second term iz zero, And, by Art. 285,

f ® cos pain uwp
AN ..
greater than #, and zero for other values of »; so that when .
w6 multiply thig expression by ¢'(¥) and integrate with
"\ .y o -
\/ Tespect to v, we obtain 5 ¢ (b —3 ¢ {2). Thus on the whole
we have

- T -
du is equal to 5 for values of v which are

$40~Fs0)-7s @},

that is g:(;ﬁ (@), as the value of the original double integral.
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ITI. Let « be less than a. Then the first term is gcp (b,

T

the second term is g ¢(a), and the third term is 7 ¢ (8) —p (a)}»

Thus on the whole we have
2B -59@-3 BB @) Oy

°\
that is zero, ag the value of the original double integral. \/

R

Hence finally the double integral is equal $o 0, Qﬁii‘o _721' P (@),

according as « lies beyond or within the Imilslaand &.

ANY;
Tt may be conjectured that if 2= f{’t}ﬁ value is ggb (o),

and if @ =b the value is § ¢(8); SRR ra IR, e ity
vertfied. R \y

If = is negative the vélﬁe‘ of the double integral is the
same as for the correspording positive valne of x; sice

RY
y o\%qgis f— ux) = cos wr.
329. In like manner supposing @, b, b—q, and x to be
L .
positive wenghn shew that f f sinuz ¢ (v) sinwuw du dv has

A 0 Ja i .
the samne Falue as the former double integral. If = is nega-

tive thewvalne is numerically the same as for the correspond-

.ingj'p})sitive value of z, but of contrary sign ; since
ot §in (— uz) = — I U

,..\t .

V' 330, By combining the resuits in Arts, 328 a:n'd. 329 we
obtain the following. 1fe¢, b, 0 —a, and @ are positive

f:qub(v) cos u (@ — v) du dv

is equal to 0 or to 7 () according as © lies beyond or with-
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Z¢ () and ¢ 0)

)
aad

in the limits @ and b; and 18 equal to

respectively at the limits,

This result admits of extension. The limitation that  is
to be positive may be removed: for, by virtac of the rem u.l'k.s
at the ends of Arts. 328 und 329, if  is negative, so that
is beyond the Jimits @ and b, the double integral \_'ams’h\es,(
Again, suppose that @ and & are nogative (‘llliilltltlefiz:'\pn’t
a=—nh,and b=—F%; also put v=—+', and v =~— a;:.t NFhen

b K & < "‘;
j cosu {w— o) do=— I cos s (o — o) o' = f cog &l — v') dv',
@ J b E AN

where & —F% is positive.
a\) ..
331. In this way we find that, if 1{7\9 be positive,

' \$
¢ (v) cos u (£ 9) dudv
q N\

is equal to O or to = (m),.’a:,é{;b’rding as x lies beyond or

'w,dl?rauljbrary.orgfﬁ J
0

within the limits p and g ;'"' and iz equal to gqﬁ( p) and
%Tgb (g) respectively ﬁt’ﬁ]e limits.

The result ._j,u}\enuncia;ted may be called Fourier's Theo-
vem; this name’however is usually applied to that case of
the generalforrula in which we suppose g=—o0,and p=1u0;
we haveghen for any finite value of «

'\
” \ed ¢ 17"
.'s\ ¢ '\x) = ’n

T

f ¢ (v) cos u (v — &) du dv.

- \:\ ) Poisson has given a demonstration of the last result, which
./ we will now reproduce. Take the formula

$ (@) = %ﬁ;‘f’ (v) dv +1Zz:°f oos ™™ =) 4 o) dos

T nT

put 1= h, 7= sh=u; thus we have

¢@=5 s0 dw+}rz{f cos u (v— z) $ (3) dv}k.

i
=
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% being a multiple of 4, and the summation denoted by =

extending for all values of w from % to co. But if I becomes

indefinitely great the difference % of successive values of u

becomes indefinitely small, and the sum denoted by = be-

comes an integral taken with respect to = from =0 to
#=o0, Thus if we make /=0, and put du for A, and the &
sign of integration instead of =, and suppose ¢ (v} is suph\.

[ ¢\

that 5]53- f . ¢ (v) dv vanishes with %, we have O

1 m o ("."‘.

¢z} == [ ’- cosu (v —a) () du ded

Jo—m " \\'

o

~

392, We shall now return fo the subjec’t'fntroduced in
Art. 8504, and shall give another dem\bu,stration, due to
Poisson. of the formula there obtainefl'.'\’ 4

¥n Art. 308 we have obtained “thlggé.fwféiléowi regult:

raulbbrary . ofg.in
1 B YL N P rafv—l)
S0+ p-ti=g [ SQEVTE[ p0)oos T s
where the summation denotéd by = applies to the positive
integer r, and extendgdrom 1 to .

Change ! inta\g-“’f;hus

L0 0)-

A&

éi 9 .é Irmw v—-%)
llfz¢(”)dv+izj zﬁb(‘f’)COS——?——-—dv.

»
&

ad

P

o~\\'

\/ “bha,nge $ (v) into ¢ (kI -+ ); then the result becomes
1 { I
s{p () e (i-g)i-
L 2re ,ﬂ——é)

1 . 247
7_’ . ¢ kl+v)dv+ 7 EJ ;gb(ki—{-v) cos ——7—-11'-'-
-3 ~g

S

(=T
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Put 2z for & +v; then the right-h:md side becomes

!
t,'fz__qb( Ydz 45 ‘f qb( 00‘527( . Q)dz.

K-i
- : 135 2-18
Now put for % in succession the values 5, =
27227 T2\
1
2 ( —@ )
and add the results; thus observing that cos - 'J‘
Dy 252>
reduces to cos —%r—z , we have \\

W

1600) +p (D) +HR20D+... - p{nl - E)x{;:%,;,;b (nl}

. 1 2.& i i
== 2 kN 7) cos = — &
wiw dbraulibrary . org.in .-ffo (f)(z) dz _;P‘;‘?]u ¢ (2} cos i %
thereforc g N

B0)+ (D) + 62D + ..+

;,f ¢ (2) da.._f (ﬁf)fi:;,(o)}JrZ.z‘{m(;;(z) wbz_?;”.ﬁd

Q

Tt will be seen m& this result resembles that of Art. 304;
we shall now cofapate them more closely.

By integration by parts

f(p(z] cos:ﬁ‘l} 4= ld)(z) gin ma — lf(ﬁ (2} sin mz dz

\-—‘ ¢(z) sIN 72 + - qﬁ (2) cos mz — 1 [ ¢ () cos ms d.

Gdntmue this process, and then take the integral hetween

*the limits 0 and nl; put m for T thus

[ 60 cos 2 ds= L 19 o) - ¢/ 0)

8" ) = " O v+ S g gty — g3 (O)

1 L
( “s) J. & (2} cosmz da.
??J. 0
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Now cffeet the summation with respect to 7, and denote
1.1

by 5. the infinite series 1 +2l, gt Thus

(0 +dD+ (2D +...+ ¢lul-1)
#l i
S CL RO
2+

i ? K
3 R0 O - BL ) - O+ O

$ CU AP g - 210} )

7

9T 108 {
(=1t L1 I"‘; Wrms JAN
t o mme g p =N ¢ (2) cos g\\dz

The fact that this result, up to the‘last term exclusive,
agrees with that in Art. 304 depen\"}l on the property of
Bernoully’s Numbers involved in .p}?'e Igiowlﬁa é%ﬁﬁfjﬁ/ g

g = 2B,
or . Oy &
The last term in the result just obtained gives us an cquiva-

lont in the form of a,,{eﬁnite integral for the remainder after
a ccriain numbersaf terms of the series in Art. 304.

The propexty of Bernoulld's Numbers may be established
thus, Use the’ formula for sin § which is given in Plane
Trigonomedcy; Att. 322, take the logarithms, and differentiate
with regpéet to 8; thus we obtain an cxpression for &cot ¢

7N\
in v-isﬁeﬁ the coefficient of & iz — 2::’3". Again we have

oot =
AN _ — _
oD o1 -1 AR R | o a2/ -1
\/ "/—159\/—1:9—9\/-_1=~/“1'828\_/‘—'3_1_J_.I 11"
‘ —  2V-1
Thus feotd=6+-1 +'éee =l

the last term can be expanded in powers of § by Art. 123 of
the Differential Culoulus; and by comparing the coefficient of
¢ with that already given we obtain the required formula.
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Let » be any integer less than n.  The sum of the series
Sl + I+ D+ ... +(rl—1)
may be obtained by subtracting the value of

$0)+d(l) +... +P(i~1),
from that of d(0)+ D) +... +P(nl 1) A

MISCELLANEOUS EXAMBLES.

1. Change the order of integration indhe” expression

~@ [ aflad- ) N\
wiw.dbraulibrary.org.in J j 4 (.:t',glcﬁ: dy.
0/ at-at § W
% AN

O
R

2. Change the order of itif@gration in the expression

'Jii\“f"’@ b () do dy.
3

of(2ax— '}

e .
3. Transform [ i (@,y)dedy into an integral with
\ ¢/ ~ ﬂ.‘i}
ékpect to % and v, having given w=y + &, y = #;
d determine the limits of the new integral.

'\
\,jf{r Transform f f ¢ (¢,5) dzdy into an integral with
’”\ ~ respect to « and ¢, having given y + oo =u, y=u;
\/ and determine the limits of the new integral.

5. Transform _Uf (o= 3) (y — 2) (2 — &) da dy dz into an ill—'

tegral in which , v, w are the independent variables,

where u'=zyz, %,'—1+1 +1 T
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6. Prove that

yora <3 [ortan[[ 2y,

(1 + 2™y
where t=g" and 7= £ )
(Sce Arts. 263 and 66; and transform as in Art, 242.) Q
: T - . ':\
7. Prove that [ tan 8log cot 9 d8 = 4_8 . QO
N

8. Prove by transforming the expression from T8ttangular
to polar co- ordlnates that the value af\the definite

integral f =t aefyteos aty’) dey. is equal to

1=l (Sln Q) , where I

r‘_“\.

i Lemplgte

elliptic fanction of the firgh order of which sin % is the

modulus, AN

¢

9. Prove that -

f . x’ﬂcotﬂﬁ&{{n’}”-}a)d‘m mn[a+ﬁ),\/ msin 28) |

10. Shew thatv’
X
] kin

Y o A _ L/ (L4nY
fo ta%tg&‘/(l-—t&n x)}dm—é—taal n~f2-——cot et

O

TN,
&

AN "gin (,E tan g)
AL IE F (g = R Wde’ determine the geometrical
N\ . meaning of the equation ¥ =z £ (sin ).

12. A curve of double curvature revolves round the axis
of z; shew that the surface generated

= 2 [Vi(gdy + 2de) + 5 + #) (da.
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13. Shew that
I‘ @ da _ o
o G+ b5 +at 200+ 2a)’

) » a;2££$ _ m . Fe
and [ e vy bk SV AR \

P4 ®

assuming that the denominator of the exprbstion
under the integral sign does nof vauish ier any real
value of the variable. ’

\S 3
14. Find an expression in terms of smes\\x\hleh shall be
equal to z when x lics between ‘E zmd — , and shall

be zero when z lies between‘—\r and — = , or between
vw.dbraulibrary.org.in N\ 2
T and 7 e
I " “‘:s:“
1 1
Result, < {sli2e —= sin 4w + 5 sin 6z — }
/2 2 3
w2 1 1
g\,\&l—};{smw~99,1[11350-{-2—,.9,1[155.5— .
N\
n\:\,,)
N/
»
t"é“'
:"\Qz
‘ /kw
O
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CHAPTER XIV. S

~
"
< 3

APPLICATION OF THE INTEGRAL CALCULUS ,TQfQiﬁEST[ONS
OF MEAN VALUE AND PROBABILITY.
,xt\\';

533. WE will here give a fey ‘-ggcmj,g apples,of jthe
application of the Integral Calcdli&\?to queggi}gns relat]%'g; to
mean value and to probability. o "~

Let ¢ () denote any fmi’éﬁén of z, and suppose x succes-
sively equal to @, @ + A2 2%, ... a +(n — 1) k. Then

N\

¢ (o) + ¢ (a+ bk (a -+ 2h) + v+ lat+{n—1) A}

. ,\\s,l n
may he said.f.ﬁo be the mean or average of the n values

which ¢ (@hrééeives corresponding to the n values of z. Let
b — @ = ph,then the above mean value may be written thus,

(@ ¢t h) +¢ @+ 2+t @ lat (n=1)Al]A
‘.\

b—a
A\

N : : . .
~\J Suppose ¢ and 4 to remain fixed and » to increase inde-

\/ finitely; then the limit of the above expression is
.
[$@as
b—a

This may accordingly be defined to be the mean value of
¢ () when @ varies continuously between a and b.
g 912
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834. As an example we may take the following ques-
tion; find the mean distance of all points within a circle
from a fixed point on the circumference. By ilits enunciation
we intend the following process to be performed.  Let the
area of a circle be divided inte a large number n of equal

small aress; form a fraction of which the numerator iz thel

sum of the distances of these small areas {rom a fixed point
on the circumference, and the denominator is »; thoi od
the limit of this fraction when » is infinite, QO

Suppose 1, 7, ... r, to denote the respectivg»,ﬁiéfﬂnces of
the small areas; then the fraction requived is { &

][-r + 7 +
PRUTPE 'r"}\\

Multiply both numerator and deng}ijn}}la;cor by rA8Ar, which

v AHEAlEARY 958 Brea of a small eleinent {Art, 148), thus the

fraction becomes o

ot 1yt el v} ragAY
“arAfAr '

_ The limit of the J:l\é*:nominator will represent the area of th_a
circle, that is, wg’if.¢ be the radius of the circle, The limit
of the numeratonwill be, by the definitions of the Integral

Caleulus, [ﬁ?"dﬁ dr, the integration being so effected as to

includesall the elements of arca within the boundary of the
cu-c%"\:‘l‘hus the result is

O .
™ :.‘ 2 Zrcos
N f ¥ dé dr
W _rde '
5 -
arg’
32

This will be found 1o give 9

835. The equation to a curve is » = ¢ sin 6 cos £, find the
mean lengtk of all the radii vectores drawn at equal angular
mtervals in the first quadrant.
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It casily follows, as in the last Article, that the required
mean length is

[

2

¢sin & cos 8 48

.,
=

, that is, ‘2,
T T
2

)

'S )\

Again, suppose the portion of this curve which lieg 1 the

first quadrant to revolve round the initial line, and thus to

generate a surface. Let radii vectores be drawn ¥am the ori-

gin to different points of the surface equably.é all directions.:
1t iy requived to find the mean length of theyadil vectores.

The only difficulty in this question,{iés"In apprehending
clearly what is meant by the wordsghis Ttalics.  Conceive a
spherical surface having the originewserdbequilhrahy exmaible
angular distribution of the radil yectores, we mean that they
are to be so drawn that the dmnber of them which fall on
any portion of the spherical¢sitface must be proportional to
the area of that portion, Now the area of any portion of u

sphere of radius ai&"’i‘ound by integrating a"ffsinﬁdq& a8

«\.J - .
within proper 1 nt,é’.” see Art. 175 Hence o’sin dAgAY
may he tuken; tc?xlenote an clement of a spherical surface,
and 27a® is phearea of half the surface of a sphere. Thus we
shall have@s‘the required result

:t\"’
\\ Uagc sin 8 cos 8 sin 8 dep d6

* a

2o

.\’
w\zvﬁc integration being extended over the entire surface con-
\v/ sidered.

Hence we obtain

fﬁ ’rg ¢sin® @ eos @ dep d? c

0 o e, that s, ¢

E ’ 3
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336, An indefinitely large planc arca is iuled with
parallel equidistant straight lines; a thin rod, ithe length of
which is less than the distance between two consecutive lines,
is thrown at hazard on the arca: find the chanco thar the rod
will fall across one of the straight lincs.

Let 2¢ be the distance between two consccutive lines
and 2c the length of the rod. It is easily seen that weg
not alter the problem by supposing the centre of thel\rod
constrained to fall on a straight line drawn betwecw two
consecutive lines of the given system and mecting™them ab
right angles, for the proportion of the favourafle cascs to
the whole number of cases remains the samesafisr this limit-
ation as before, '

Let the centre of the rod be at a dis’gapc\e;a: frow the nearer
of the two selceted parallels; then sugpdte the rod to revolve

. dBPRAsh - gentzanand it is obvious fhat'in this position of its

'S
_ e

. D .4
centre the chance that it crossegsthe straight linc Js 2—¢ , where
- FA -
ceosp =2 Aud we may:",il’enote by A the e¢hanee that
L 2]
the centre of the rod falls\between the distances » and @ + A%
from the ncarer of #he two parallels. Thus the chance re-
quired will be doKs(c by the limit of the sum of such quan-
s 2 A oL i
tities as =P Pt i, it will be 2 J ¢ da, where cos ¢ = z.
T 53 A e ¢
The lngu’cs of w are 0 and ¢; hence the result
&
%..

_ 2 : . 3
5 Fpinpae

This problem was first proposed by the eclebrated naturalist

»
&
ad
S

\ ) Buffon, and was atterwards discussed by Laplace: sco Hstory

of the Mathematical Theory of Probability, Art. 1020,

337. An indefinitely large plane area is ruled with
parallel cquidistant straight lines, the distance between w0
C()nsecutive lines being ﬂr), a cloged curve ha,\!_ing no Siﬂ..’
gular points, whose greatest diamcter is less than b 18
thrown down on the area: then the chaunce that the curve
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will fall on one of the straight lines i3 ;f—b , where [ is the peri-
meter of the curve,

Tet AA’ be the longest diameter of the closed curve, and
assume that the curve is symmetrical with respect to 44" ,
It is easily seen that we do not alter the problem by sup-
posing the point A constrained to fall on a straight ling
drawn between two consecutive lincs of the given sysberng
and meeting them at right angles, for the proportion bf the
favourable cases to the whole number of cases regiiains the
same after the limitation as before. Take twd/stich con-
sccutive straight lines, and consider one of thera, which we
will denote by MN; we shall estimate theehance that the
closed curve will cross MN, and by doubling)the result we get
the chance that the closed curve will c{’)ss the system.

Let A be at the distance » it My lillrawy A°F iper-
pendicular to MY, so that A X2 Supposs the eurve to
vevolve around A, and it is ob¥iets that in this position of 4

the chance that the curvg ‘erosses MN is p where ¢ is the

angle between A4’ gAd>AY when the closed curve fouches

MN; and wo '\aéf’lote by %ig the chance that A falls be-

tween the diftences @ and & + Az from MN: thus, as in
Art. 336, flebtain finally wlb f é d for the required chance.
't\" i
"\‘~
oW de =ap — [wdp;
N [pdv=op - [adp;
when @ =0 we have ¢ =, and when z =44 we have

("$'=0; the limits of z are 0 and 44'; thus

v j«;)dm:—f:wdtj):j:xd(p.

fﬁ add = %J by Art. 91 ; thus the chance of crossing MN i
0

§::_i-'5 ¢ and doubling this we obtain for the required chance 3
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We assumed that AA4" divides the curve symmectrically;
but the result will be the same if this restriction be removed.

Instead of the expression g—i we shall now bave ?-’%35—2,
where ¢, denotes the angle between 4 A" and AY when the
closed curve fouckes MN at a point on one side of A4’ and{
$, denotes the corresponding angle when the closed cupve
touches MN at a point on the other side of A4". Then figally

. 1~ | 1 (€5, .
instead of 3 f ° d¢ we shall have -2—7}-2)”0 wdd, + j’i’?b,}[:g wdd,;

and the sum of these 1s L as before. &
27 e\

This problem was given as an ExampleJor the particular
case of an ellipse in the first edition of ,th}«present work ; in
the second edition the problem was pht*in the gencral form

o dbaefulHpensseds g verification by, siwple reasoning may be
seen in Bertrand’s Calewl Intégralypage 484, This problem
includes that of Art. 336; forls rod of length 2¢c may be
regarded as a very slender efal curve of perimeter 4c; thus

L becomes X2 , that is,ﬂi: that is 22,
b wh L 2rra T

338. A wver 'c?mﬁ\ous theorem in the Integral Caleulus
was obtained byyﬁofessor Crofton, by the aid of the Theory
of Probability, Jand published in the Philosophical Trans-
actions forsJ868; this we will now give. The method of the
discovererof the Theorem well deserves the attention of the
studens,fon account of its movelty; we will however bere
maiglyfollow that adopted by Bertrand in his Calowl Jnté-
grad, which invelves nothing but the ordinary principles of the

s Theory of Probability,

N

839. An indefinitely large plane area is ruled with
parallel equidistant straight lines; suppose fwo closed curves
fixed in one plane, cach completcly outside the other, and let
them be thrown down on the area; suppose also that the
distance hetween iwo consecutive parallel straight lines 18
such that the two curves cannot cross more than one straight
l}ne at a time: required the chance that onc of the stroight
lines shall cross both of the curves, '



N

\
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Imagine » string drawn tightly round the two curves,so

-as to enclose them both, and to form two common tangents

which do not cross; let I, be the length of this string. Again,
imagine a second string drawn tightly round the two carves,
3o as to enclose them both, and to form fwo common tangents
which cross; let I, be the length of this string. Then the

. Lo . :
required chance is Z*ﬂ_b 1, where b is the distance between twg,

consecutive parallel straight lines. . O

L, . . {, N
For it is scen on investigation that w_’E expresses thévcliance

A\
of the boundary formed by the second string heiﬁ‘g\crossed by
a straight line; but this includes the casgs\ih which the
common fangents are crossed, and pot apy part of the peri-
meter of the two curves: and moreovel ases in which both

perimeters are crossed are counted twice)over. The cases not
wivw dbraulibrary . grg.in

required constitute the aggregate \cotTesponding to 7?_15; and

: RN l,—
thus by subtraction we obtaji™the result —’wb L

340. We now appifthe general result of the preceding
Article to a particuladcase; we suppose one of the two
curves to becomelan infinitesimal straight line, that is a
curve in whichPhe longest diameter is infinitestimal, and
the shortest, i itifinitesimal compared with the longest. Let
PQ denote(this infinitesimal straight line, and suppose its
situatiqn\'é%c"h that P produced would intersect the closed
curve\associated with PQ: we proceed to estimate I,— 1.
Of thetwo ends, P and ¢, let £ be the more remote from
th&elosed curve, Let PA and PD be the tangents from Pio

thie curve ; let QC and @D be the tangents from @, so that o)

Jis very near 4, and D is very near 5. Then

I,—i =40+ 0Q+32PQ+QD+ DB~ (AP+ FB)
=3PQ+ AC+ CQ - AP+ BD+ DQ—BP
= 2P0 — P cosa — PQ cos B3,

where QP4 =a and QPB=5.

"\
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Therefore in this case the required chance
P
=—Q(2—cosa—cosﬁ).
b

341. Our object is now to solve this problem: fwo
straight lines are drawn af random ucress « plune clogd,

qurve: 1t is requived to find the chance that they wik o

tersect within the curve. But this will require some dcvelop-
ment; and in the first place we must explain th& sgnse in
which we usc the phrase u random struight line drawn across
& plane curve. O

Suppose a plane curve thrown downsdn’such a system of
parallel straight lines as we have considéred in the problems
of Arts. 336...339; and let this prodess be ropeated antil.

. dbcitaeight, ling grosses the curve A the straight line which

o

thus first Crosses the plane curseds called a random stratght
line drawn across the plane carye, or bricfly a raadom ling.

Tt follows from this defiflition that unless the curve be a
circle random lines wilk hot occur with equal facility in all
directions with rgspéch to the curve; for instance, if the curve
be an ellipse of ‘gleat eccentricity random lines will oceur
parsilel to the“minor axis with much greater facility than
parallel toghé fajor axis. Let us determine the chanco that
a c!mrd of{adeurve drawn at random should lie betwecn two
assigned directions including an infinitesimal angle d9; this
may%{'or’brevity be described less accurately as the chanee
that & chord drawn at random should have an assigncd direc-

..\t‘}(ii'l 0. Let p denote the breadth of the curve measured ab
(2ight angles to the assigned dircction, that is the distange

between the two tangents to the curve which are parallel to
that direction; then the required chance is obviously propor
tional to p df, and so may be denoted by Cp d@, where O
some constant. We may determine ¢ from the circumstance
_ttht the sum of the chances corresponding to all directions 18
unity, as the chord must have some direction, Thus

¢ pdo=1;
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but by the aid of Art. 91 we see that this becomes Ol=1,

where I denotes the perimeter of the curve; therefore C'= %

342. One chord drawn at random is pamllel' to & given
diveclion: find the chance that it will be intersected by. {\
another chord drawn at random. . o

The chance that the first chord should cross an assigééd.\

breadth p of the eurve, which is at right angles to the given
direction, within an assigned space dp of p, and fa.lI“’Within

the angular distance dff from the given directiqp'\’i's:’-c—i‘i—) P ‘f—e,
that is ip d.é?' Suppose such a chord dended by MNina

{ ¢
diagram; and let 2 denote the chance $hat it will be inter-
sected by o second chord drawn at raﬂd%rg. . .

wiww dbraulibrary.org.in

1f we throw the curve on the gystem of parallel straight
. o . N
lincs we have, as in Art. 3385the expression 2W—b~ for the

chance that the chord M 18 intersected. This may be con-
sidered as the chancel ®f a compound event, namely, the
chance that the cwde) is intersected, and thab it is intor-
sected along MY, \Fhus
O My 1
A\ R e R

:t\'": ;
therefo @) L 2My
’\ Nes l
.»ZET.encc the chance that the first random chord is N, and
. Alat this chord is intemsected by a second random chord, 1s
Vo dpdé 2MN
e M — ,
{ {
N
2 ﬁj\ 46 dp.
343, We can now return to the problem proposed at the
beginning of Art. 341, If we sum all the valnes of the ex-
pression just given we obtain the chance that fwo chords

ihat is
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drawn at random will intersect within the curve: this chance
then is
2 [
PJJHL' de dp.
But fﬂffN dp, between the proper limits, is cqual to thel
area of the closed curve, which we will denote by £, @bd
jd@ between the limits is equal to . Thus linally, g'have
23 N
for the required chance :ﬂ;'( K1s.
¢ "

344 We now proceed to find the\dliance that two
random chords produced will interscef\mitious the elosed
curve; and we begin by finding theleliinee that the inter-

w.dBeatilebrdekesgpiace within a certalhNnfinitesimal nres which

oy

\

occupies an assigned position. WeMnuy naturally cxpect that
this chance will be proportionalito the magnitude of the 1n-
finitesimal area, and indepeddent of its torm; but we will
nob assume this: the rcad@rimay draw the infinitcsimal area
of any form, as circulagrer rectangular,

Consider first thexdirection which makes an angle @ with
a fixed straight late“let » denote the breadth of the infini-
tesimal ares, aad'p the breadth of the elosed curve, both
measured agyright angles to the specified direction. The
chance thab'd random chord should have this direction is

4o O . e
pz_ﬂ ; e the chance that with this dircetion it should cross

#

AN . . .o .
the Mnfinitesinial area is —; the chance of the commpound event
s Y p

4 R

o Tdd . . fq s

) T The chance that this intersection oceurs within an as
signed portion dr of » is d—? rdd , that is dr df?. Lect a straight

r | 7 ’
line in the specified direction be denoted by MNQP, cutting
th?l (j%osed curve at M and N, and the infinitesimal area at
and 1*

The chance that a second random chord. wtersects the
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first within the infinitesimal area is the same as the chance
that it intersects the straight line P¢Q. Let z denote this.
chance; then, by Art. 340, and as in Art. 342,

PQ l
g(2—cosa—cos,{')’}~-?E><z,
IJQ '
therefore 7= {2 — cos «— cos 3). A
xe
Hence the chance that there will be intersection,(amd”
that one of the chords will be PQ PAN N
drdf  PQ AN ?
=7 ?=F (2—-coso—eosB)dr dﬁ\\
Therefore the whole chance of intersectiom\within the as-
signed infinitesimal area is AN

1 f J'PQ (2 - cos a — cos B} db.
P \©) , :
wirytdbraulibrary .org.in

Now [ PQ dr between the properilimits is the infinitesimal

arca, which we will denote by.d. ;. thus the expression becomes

oy

%f(Eféééﬁw—cosﬁ) d6.

Let 4 be the a’nﬁ]’} which the closed curve subtends at
any point of ¢; thed 5+ a=1, so that 8=+ — o and we
may put the expression in the form

O o
g}f%[ {2 — cos a — cos (¥ — &)} du;
Ve \ud Jo
and t{iS\Will be found equal to
- 2 :
K\ 7 (f —sin ).

o\ \ ) 945. Thus the whole chance of intersection withoub the
\/ closed curve is

2

2 [~ sin )

where dw is put for o, and denotes an element of area; the
integration is to extend over the whole area outside the
closed curve. The sum of this chance, and of that found n

Art. 343, must obviously be unity; thus
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gr‘;ﬂ +-§fdw (dp—simr) =1,
" therefore ]‘dm (¢ —sin ) = Z—;— af{}.

Here 1 represents the perimeter of any closed curve, &
the area, Y- the angle which the closed curve sublends at any
external point, dw an clement of area there ; and the integral
is to extend over all the area outside the closed curve{ )This
formula in the Integral Calculus constitutes the theorem dis-
covered by Professor Crofton. e\

¥
346. A large number of very intcresting"’p\roblems rela-
ting to the subject of the present Chaptenwill be found in
the volumes entitled Mathematical ngst;éq\w, with their solu-
tions. From the Educational Trimes "
ww.dbraulibrary.org.in A/

AEXAMPLES.
o
1 Er=f(f) andy=7 (E) be the equations o two curves,

J(6) heing a function which vanishes for the values
0,,8,54nd is positive for all values between these
limits, and if A be the area of the former between the
(limits 0=0, and #~=6,, and M the arithmetical mean
\.§ ‘of all the transverse sections of the solid generated by
«y" the revolution about the axis of « of the portion of the
N latter curve between the limits x =, and » =ab,
N/ shew that M = & 4, supposing 8, greater than &,
2. A ball is fired at random from a gun which is equally
likely to be presented in any dircetion tn space above
the horizon: shew that the chance of its reaching

1

1 . .
more than Eth of its greatest range is \/ (J. _--E)'
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3. From a point in the circumference of a circular field a
projectile is thrown at random with a given velocity,
which is such that the diameter of the fleld is equal to
the greatest range of the projectile: find the ¢hance of
its falli ithi .
its falling within the field Resull %_7_21-(“2 _1).

4. On a table a serics of straight lines at equal distances’)
from one another is drawn, and a cube is throwr at
random on the table. Supposing the diagonal\of the
cube less than the distance between geehsecutive
straight lines, find the chance that the clibe will rest
without covering any part of the lineg,\J

Result, 1-—- g , where @ is the edg’e})f the cube and ¢

the distance between consecqt»iﬁr}stra.ight lines
wiww dbraulibrary.org.in

5. Prove that the mean of ali .the radius-vectors of an
ellipse, the focus being the’ origin, is equal to half the
minor axis, when the¢straight lines are drawn at equal
angular intervals ; «apd is equal to half the major axis
when the straigitines are drawn so that the abscisse
of their extremities increase uniformly.

6. An iﬂdeﬁnj{‘b\number of equidistant parallel straight
lines afedrawn on a plane, and a rod whose length is
equajd6 r times the perpendicular distance between
two-Conseoutive lines is thrown at random on the

¢plane: find the chance of its falling upon = of t2he

. O ;,trai ght lines. - If n =7 =1, shew that the chance is =

\ 7. Two arrows are sticking in & circular target: shew that
the chance that their distance iz greater than the
radius of the targei is 2‘/—% .
T

8. Supposing the orbits of comets to be equally d.istn_but.ed
through space, prove that their mean inclination to
the plane of the ecliptic is the angle subten'ded by an
arc equal to the radius.
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9. A certain teritory is bounded by two rneridian circles
and by two parallels of latitude wlich differ in longi-
tude and latitude respectively by one degree, and is
known to lie within eertain limits of latitude: find
the mean superficial area.

10. A straight line is taken of given length «,and two of
straight lines arc taken each less than the first stratghs
line and Iaid down in it at hazard, any one, pesition
of either being as likcly as any other. Thegtengths of
these straight lines arc & and &'; it is reglired to find
the probability that they shall not lia¥e “a. part ex-
ceeding ¢ In common. ¢

! H
Resg&fi’-.\\ Ao~ M
AV {e—b)(a—-b)
(Camb. Phil. Transactions, V8L vim. page 386.)
w.dbraulibrary org.in W '
11, From any point within a glosed curve straight lines are
drawn at equal anguladintervals to the eircumference:
shew that the meamy value of the squares on these

straight lines i{fthe product of 1 into the arca of
) s

the curve,, ;)
N\

12, A messenfér M starts from A towards B (distance a) at
& ratelof v miles per hour, but before he arrives at B &
shoWer of rain commences at A and at all places occu-
ABylag a certain distanee z towards, but not reaching

’xbéyond, B, and moves at the rate of » miles an hour
R\ t.ovsfards Ay if A he caught in this shower he will be

Lou" obliged to stop until it ig over; he is also to receive

S, for his errand a number of shillings inversely propor-

} tional to the time occupied in it, at the rate of n shil-
lings for one hour. Supposing the distance z to be
unknown, as also the time at which the shower com-
menced, but all events to be equally probable, shew

. that the value of M’s expectation is, in shillings,

v {l oy w4 v w
SO )

N\

[#2 H 1}2 1@
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13. A large plane area is ruled with parallel equidistant
straight lines, and also with a second set of paralle]
equidistant straight lines at right angles to tho former
set; a thin rod is thrown at hazard on the area: find
the chance that the rod will fall across a line,

{Bce History of... Probability, page 347.) N

2\

14. Suppose a cube thrown on the system of lines deseribad”
in the preceding Example: find the chance that'the
cube will fall across a line. A\ 3
(See History of...Probability, page 848.) { ¢

15. Let there be a number # of points rapgdd In a straight
line, and let ordinates be drawn :d}\\}hese points; the
sum of these ordinates is to bplequal to s; moreover
the first ordinate is not to béygrenter than the second,
the second not greater tharwitiel byl burd kg bn «
shew that the mean valyelof the " ordinate is

sl 1 &% 1
ﬁ{ﬁ*'n—-l-’h '—2+'"+n—r+1}'_

(See History ;g‘:\“‘.Pmbabthy, page 545.)

16, Verify the ch}s}n:;]a in Art. 345 by direct integration in
the casg\where the closed curve is a circle,
A</

w2

Q
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CHAPYER XV, )

CALCULUS OF VARIATIONS.
# '\’
Mawima and Minima_of integrals involimmg one dependent
variable with fived limats,
9\

347. THE theory of maxima aud\minima values of given
Ty .

,W‘d%lﬁ%ﬁ?qlﬁ.yi]g{ ylly considered ingfwerks on the Differential

\

) ¥
4

ulus. or example, y degotés any given function of an
independent voriable @, theu fve can find the valuc or values
of # which make ¥ a maximwgh or minimwn, or we can shew
that there are no such valfiés in some cases,

We are now however about to consider a now class of

maxima and nlinimivgroblems. Let y denote a function of

which is at pres&%ﬁ tndetermined ; and let V' denote a given
. TN 2 .

fﬂﬂ‘-‘-t-loll ijﬂ‘f‘y, &%, Egg,... Suppose we wish to find the

relation which must hold between w and g in order that the

integral YV dw, taken between given limits, may have a maxi-

11.1]11?1 or minimum value, We cannot here effect the integra-
~tion, because y is not known as a function of «, and therefore

OV is not known as a function of 2 ; thus the ordinary methods

of solving maxima and minima, problems do not apply. We

requh_"e en a new method, which we shall now proceed to
explain.

348.  The department of analysis to which we are about
to Introduce the student is called the Caloulus of Variations;
it object is to find the maxima or minima values of inte-
gral expressions, the expressions being supposed to vary by
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assigning different forms to the functions denoted by the de-
pendent variables. It will be seen, as we proceed, that the
method of finding these maxima or minima values is ana-
logons to that of finding ordinary maxima or minima values
by the Differential Calenlus.

549. It will be useful to recur to the method given iy )
the Differential Calculus. The student will remember that
the terms maximum and mendmum are technical terms, which
are defined and illustrated in treatises on the Differential
Caleulug; and they are used in mathematics in‘the sense
there assigned to them, Mistakes are frequently made by
confounding a maaimum value in the techniehlsense of the
word maximum, with the greafest value in.@ef ordinary sense
of the word greatest. &

Supposc y a given function of an\hdependent variable z;
then if an indefinitely small changwNsixittatautibraiy . gegdral
au indefinitely small change is cofisequently given to y, which
1s comparable in magnitudo witly that given to z. The pro-
cess of finding & maximum «r minimum value of ¥ may be
sald to consist of two patfs. First we determine such a value
of z that an indefinitelf small change in it does not produce
in ¥ a comparable jﬁd&n.itely small change, but a change
which is indefinjtely\small compared with that of . In the
second place, we\examine the sign of this indefinitely small
change whichig“produced in y by the change of @; and for
a maximupi $his sign is to be necessarily negative, and for
4 minimyup positive,

1may therefore deseribe this process briefly thus; we
make.the terms of the first order in the change of the depend-
gt variable vanish, and we examine the sign of the terms
“of’ the second order. We shall pursue a similar method
‘with the problem which we have now to discuss; we confine
ourselves, however, at present entirely to the first purt of the
process, and shall hereafter recur to the second part.

350. We have first to explain the notation which will
be used. Let x denote an independent variable, ¥ auy fune-

tion of x, and -d-‘yt, ﬂz;“ the differential coefficients of ¥
dr’ da

23 _ 9
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with respect to 2. We shall use 8y to denote au indefinitely
small quantity which may be any function of x; and if #
denote any quantity whatever which depeidls on 3 we shall
denote by éu the increment which w reccives when 15 changed
into y+&y. Thus, for example, consider the iflerential eo-
efficient, gZ’ when g receives the increment 8y this differgns

.‘\“‘@E .

tial coefficient receives the increment {ifiy’ so that (by'8 %

we mean 2 ;f . It is often convenicnt to use ’qi{e gymbolp
dy . . "":\\ . ddy
for o and so also 8p is a convenient Syrabol for =

. . e\ 7
Again, copsider the second differential’ @defficient - Z; when
g a\ dw

ror a5 Vesflﬁ?‘éj_’?ﬁremem E?:’ this sbond differential cocfficient

\

) ¥
) 3

Tar

receives the increment d??” , amid as the second differcntial

coe%;zsieut is often denoted bY g we may conveniently use 8¢
for _—__dwzyo Similarly » and's may be used for the third and
fourth differential qogfficients of y respectively, and 8r and 08
for 7o and ﬁy\!@s ectively ; and s

di® d* P y; and so on.

’ '.Ehe"diff‘elzéntial coefficients are also often denoted by
v,y ‘1%',\", and thus 8y, 8", §y”... may be used as equi-
valent to &p, 8¢, &r,... respectively.

O\

s\ 35L. The introduction of the symbol & is dne to La-

grange. The student will see that this symbol resembles in
meaning the symhbol d, which is used in the Differential Cal-
culus, Both_ dy and dy express indefinitely small increments;
dy however 15 generally used to denote the change in volue of
a. given functlo_n consequent upon a change in the value of the
dependent variable, 8y is used to denote tho change made by
a,scnb}ng an arbltrm-y change to the form of a function. The
quantity denoted by 8y is called the voriution of g
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2
352. Let V denote a given funetion of a, y,%, gi{, ver}
& :

i,
and let U= | Vdux, where , and «, are supposed to denote

*p
given limits. The value of &7 cannot be found so long as we {
do not know what particular function y is of #; but withont
knowing this we are able to obtain an expression for,tha
increment made in U by aseribing the arbitrary incremgnd: 8y
to 3, {from which important inferenees can be drawn, \ .

Suppose V=dlo, vy, v, v ..); :
then by definition

SV =¢(my+8,y +3, ¥+ 8"y #B% ..)
R
. W* 2 (fb“,(fﬂ,y’;y W ¥ ;_H-)'
www.dbraulibrary org.in
The first term may be expandéd by the ordinary exten-
sion of Taylor's theorem ; thas™s"

%7 2
S

AV. AV A AV, dV .
av o) . : .
where —dy iz the\ipartial differential cocefficient of V with

respeet o y,\'alsd %is the partial differential coefficient of V'

with respget'to 3'; and so on.

futhe above expression for 8V we have only expressed
tersid0f the first order, that is, we have omitted the terms of
the second and higher orders with respect to the small qnan-

(‘taties 8y, 8y, .... This we shall continue to do throughout the

o \

) remainder of the investigation.

Then
ST = f "5V de

) dV dV * dV s dVS 1Er }d‘w
:[“ {@8y+d—9;3y +Eélﬁ‘3.'9‘ +dy’" A

<y
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We shall now transform this exprosstn by fulegration by
parts.  For shortness put
dV . dV a dY o dr o,
7y =N, &y =P, &y = Q, 5= f, .
2 e o
Then fPSq do = jP oy do =P8y — I;L_Z Sy dus; (\)
i ez & N\
w7 ' . LR ',.’. y
therefore f Py de = (P8y), - (L3y), — / 7 S
Say dplE

Here (PbJ) 15 used to denote the valpdt o}\ISg when o,
is put for and (£0y), is used to denotesile valuc of Psy
when #,1s put for #; a similar notation vaH'b( used through-

out. It is to be carefully obsewed t’h\t - weans the com-
o dBig 81 ERTential, coefcient of P w‘Ith w;,pe:,t to &, that is to
say, in forming Ei?i we are to 1emembm that y and its dif-

ferential coefficients ali mv.ojve z lmplicitly,

Again \"\
. M dEs ddy A diy
8 ‘d i‘ “—'y G = f "! }‘
fQ J d'b& ¢ W= Q0 dz fofa (I’x
,\":" dsy dQ
'\ = de — 8J+fd 0y der;
ther afé‘
d@y dQ ddy  dQ .\
Sy da . ) ( doy _ df
'L b 4 o= dr 8y “ dz  da 83/)0
"\‘,z
&,
Similarly
“ oo Sy dR I3 d*R
RSy d =(£ Y _dfiddy )
W TN s Y

(dSy deSa; d*RS) gty

da®  de de T g v di® by d
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This process may be continued until all the symbols
&y, &y, &y, 8y, ... are brought from under the integral
sign. It 1s to be observed that all the differential coeffi-

d@ d'Q dJdR 4B dJd'R

cents 2%, %, =, orpa ave gomplete differential

coefficients,
Oy
ITence finally o
N iQ @R _dQ &R }
OU-—(S_T,’I{P-—*E&E"}‘?M—J—}I—SE,’O{P d$+g’£§" Y R
-9, )y fo-F s
I e R d Y,

" N
+8g, {R~...}, =8¢, {B—...]}, we¥dbraulibrary.org.in

E N
N

sy AP Q&R )
-+ :,r.e (J\‘ —“—da': +%‘=“ 'gx_a"f‘ vaa Sydﬂ,‘
&
Here we have a OKM some obvious simplifications of nota-

do
tion; thus we'use 8y, for (8y),, and JIp, for (—ag)l, and

80 om, P\
Ry
3‘&3\?).\' The value of 87 may be denoted thus,
& |
AN . SU=FH, - Ho—i—fﬂKSyd.'a,
o"\; w 4 ) @y

where H, denotes a certain aggregate of terms in which x, is
put for a, and H, a similar aggregate of terms in which , 1
put for @:; these aggregates do not involye any integrations.
Also

. dP_&#Q_d'R
A:i‘\‘—%—l—w"—gws"'coo
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Since H, — H, involves only the valucs of the variables at
the ltmafs, we shall sometimes speak of H, — If, as the terma
at the limits.

354, We can now determine the conditions which must
hold in order that U/ may have a maximum or minimum{
value. For, in order that U may have a maximum or mini*
mum value, 8 must vanish, whatever 8y may be, proyided
ol?ly that it is an indefinitely small quantity. 'This geghires
that RS

K=0 and H - H =0, "G
For if K is not always zero, it will be in our\potwer to give
such a value to 8y as will make 8§77 positive™r ncgative at
our pleasure, and not zero. Suppose, for example, that the
highest differential coefficient of dy w ith*occurs in H - H,is
the %  Put 8y =a (x — =)™ (# — z)"ywhere « is a function

w SBubRE Yieribfinitely small, 4nd” is at present undeter-

mined. Then this value of 8y migkes H, — ZI, vanish, so that
8 reduces to f 'K Sy doe. N ow take « such that it is always

positive when X ig positive, and negative when K is nega-
tive; then 83U is neceSsarily positive, And if the sign of &
be changed, 8U is(iiecessarily negative. Thus if K is not
always zero, it istour power so to take 8y as to make U
positive or negative at our pleasure.

Hence 0r/a maximum or minimum value of U we must

N 1 .
have K £0; and then f K8y dx vanishes, and therefore
¢ .

a-lsq’k;— H, must =0.

()" 855, The student has now become acquainted with the
) “essential features of the Calculus of Variations; these are

(1) the reduction of §T to the form H —H, -I—fanKS;?} de,

&
(2} the principle that & must vanish in order that U may
be a maximum or minimum, Although the subject admits
of considerable development, by various extensions of the
problem we have considered, still the two results we have
already obtained are the chief resultg,
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356. We now procecd to examine more closely the
naturc of the two conditions

K=0and H —H=0
The equation K =0 is what is called a differential equa-

tion. Suppose that &y is the highest differential coeﬁiclent

d a3
which cceurs in V; then this will in general ocour in R,\also,
3

and therefore in ﬁx,—j? the differential coeﬂicientj‘%’ will

occur, and this will be the highest differential coeffigiént which
oceurs in K, so that the differential equation & =0 will be of
the sixth order. And in general the order ef\the differential
equation is twice the order of the hJcrheqt\dlﬁ'etentlal coeffi-.
cient which oceurs in V. ¢*¢

N\

It is shewn in freatises on Diffaremtidbiligiations dhatithe
solution of a differential equatlon imvolves as many arbitrary
constants as the number which«8xpresses the order of the dif-
ferential ‘equation. We mustinow shew how the a,rbitra,ry
congtants which arise from $he solution of the equation K =
are to be determined, sq that a definite result may be ob-
tained, The condmon\H ~ H, =0 serves for this purpose.

Two cases may arm{é

(1) Suppese that no conditions are imposed by the pro- -
blem on the{values of y and its differential cocfficients at the
limits of theuntegration; then 8y,, 8y,, dp,, &p,.... are all arbi-
trary gquan 1ties, that is, we have it in our power to suppose
any i‘u\duﬁmte]y small values we please for these quantities;
forexample, we may suppose that as many of them as we
gease are zero, Since 8y,, d¥,, p,, &p,,... are thus all arbi-

ary, in order that H, — [, may certainly va,msh the coeffi-
ciont of each of the arbltrary quantities must vanish. This
furnishes for determining the constants as many equations as
there are constants,

{2) Suppose that conditions are imposed by the problem
upon the values of y and its differential coefficients at the
limits of the integration; then 8y,, 8y,, &p,, 8p,... are not all
arbitrary, for some of them can be expressed in terms of the
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rest by means of the given conditions. Let 15 inany as pos-
sible of the quantities dy,, 8y,, 8p,, &p,.... be eliminated from:
H,—H,, and then the coefficients of those which remain must
be equated to zero. The equations thus obtained, together
with those which express the given conditions, will form a_
system equal in number to the number of constants, and
therefore will serve to determine those constants. O\

357. The principal difficulty in examples consistén the
solution of the differential equation & =0, and thisidifficulty
is frequently Insuperable. )

.

We wili now shew that when 7 does noﬁ‘}\expliciﬂy con-
tain the independent variable, one step imphie solution of the
differential equation can always be takén. It will be suf-
ficient for practical purposes to confide dursclves to the case in

i i i ial boeffici " higher than
wd Whll%lﬁi_ga?g?éﬂens no dlfferentm‘l :c:qeﬂiclent of 3 higher tha

Simce V is supposed notto ‘involve @ explicitly, we have
for the complete differential ecefficicnt of V-

v _ dy . dp dq dr
EE AR A b
And by syppesition
RS I 0
MK O—N—&E ‘ng---d—‘m—g ................ ()

Thus /N

.“\‘0
ZdPdy L dp d&Qdy dg  d*Rdy , ,dr
.a:%“%&;”&f%%“?— R

3 dx+%§tﬂ:+ dw "

.\' 3

O Now

 ;

\ dP dy dp d ,dy
wa Tt
FQdy _odg_d (dQdy _, dy

da* d @ dwﬁ@{aa? dw ¢ dmz}’
$Rdy odr_d {d‘*R dy dRd d‘fg} _
ot

Wt e At R a
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Hence, by lntegration,

_ply_dQdy, Ty IRy _ARdy &y
V=P e it i e TRt O

where € s an arbitrary constant. The highest diﬁ'erentla,l

coefficient that can oceur in (2) is jz‘z which oceurs in PP

thus (2} is a differential equation of the ffth order, whidh\ig

a first Integral of the equation (1) which is of the siwth otder.
Particular cases may be obtained by supposing B OF, Qor P
to be zero.  For example, the most useful casgy is that in

which ¥ involves ounly y and fgm; go that (1) bé‘c}mea

> o\
N
e h
and (2} becomes ww braulibrary.org.in
=P —J 0

358, The differential ‘equatlon K =0 1is also susceptible
of one integration when, 7" does not contain the dependent
variable. For then l\\ 0, and the equation becomes

sz &R _
.‘% dﬁ+dmﬁ =0
and t-herefprts:
S dQ &R
¢ \ 3 — =
N\ P do v dF T ¢

N

339 We know that I’dx-fV dy, supposing the

hmzts of the integration with respect to y taken fo corre-
spond to those of the integration with respect to . And the
differential coefficients of y with respect to + may be expressed
in terms of the differential coefficients of « with respect to 3.

Thus me dy we may vegard ¥ as the independeunt vari-

able, and & as the dependent variable, and proceed to find
the maximum or minimum value of the integral in this new



348 CALCULUS OF VARIATIONS,

form.  We may feel ¢ priov certain, as the problem is really
not changed by this change of the independent vaviable, that
we shall obtain the same result as if wo had lrept the origina)
independent variable.

Hence the cases considored in Arts. 357 and 358 may be
seen to coincide. [V
O\
360. Again, let us suppose that V. involves onlfyp and
¢ Then the differential equation & =0 reduees oy o

P dQ _ .0
BRI IR

therefore, by integration, O
p_dQ D
=
«+.dbraulibrary.org.in dv o f
1 2 = plB Y
_ 'dp dQ dp dg .
Ot T e do TG

fherefore_, by inte, 1{@:131’\011,
N Vet Opta,

Here 0, 3ad/C, are arbitrary constants. In this case the
differential” equation K =0 is of the Jfourth order, and the
resultwe have obtained is a differentia] equation of the secqﬂd
Orl]xe\ » 80 that we have effected two steps in the integration
gf:}he differential equation K =0,
O 861, We shall now Proceed to consider some examples;
/a3 we have already intimated we confine ourselves entirely to

the first part of the process for finding maxima and minima
values; see Art, 349,

362, To find the shortest line between two points.

This example is introduced merely for tho purpose of

illustrating the formule, as it is obvious that the result must

be the straight line joining the two points,
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Here V=y(1+p9 and U= f "L+ P do

glh)us V involves only p, and the equation K'=0 reduces to
i 0; hence P must be a constant, that is, ﬁﬂ- musb
be a constant, This shews that p must be a constant, 263,
therefore the required curve must be a straight line, o\

N

. 8 b N
In this cage I, — H =— 3‘—?% P (N
TV TV
If now the two points are fized points, welhze 8y, =0 and
8y, =0; thus I — H, vanishes. Then the\yslue of p must
be found from the condition that the strajght line must pass

through the two fixed points, \

Suppose however that the ordiidis dtfrlati b pEings are
not fixed ; thie abscisse are fized betause x, and x, are taken
to be invariable. In this case 8 and 3y, are arbitrary; and
therefore H,—II will not negessarily vanish unless the coeffi-
cients of 8y, and Sy, vanieh® This requires that p, and p,
shonld vanish, and as p{is a constant by supposition this con-
stant must be zero. ,«Fhus our formmnle are consistent with
the obvious fact, (}?}:@d\rhcn two straight lines are parallel the
shortest distange between them is obtained by drawing a
straight line perpendicular to them both. -

N

363. »¥o find the curve of quickest descent from one
given pojut to another.

The following is a fuller statement of the meaning of this

preblem. Suppose an indefinitely thin smooth tube con-

(necting the two points, and a heavy particle to slide down

W

) this tube ; we require to know the form of the tube in erder

that the time of descent may be a minimum. The problem
is known by the name of the brachistochrone; it was feirst
proposed by Jehn Bernoulli in 1696, and gave rise to the
Calculus of Variations.

We shall assume that the required curve lies in the ver-

tical plane which contains the two given points. Let the axis
of y be measured vertically downwards, and take the axis of
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@ to pass through the upper given point. The particle is
supposed to start from rest, and then by the principles of
mechanics the velocity at the depth ¥ 18 /(2gy). Thus the

time of descent is | Y& +2) dr. We may then take

Ty )\/(29.?)
_ V(A% N o
T O
Here V involves only y and 2; so that, by Arg. :Sg?, for
a minimum we raust have N
V=Pp+ C, R4
: 1+p%) ¢ N
that is, V+p%) _ N &,
R T e
1 AN\

therefore oy N ()
rw.dbraulibrary.orgin  A/{y(1 +pz)} QO

Hence y{1 + p°) = a constaultt= 2« supposc ;

therefore g;%: 2a—y ;
o~ y
therefore dﬁ:{ .__E__)} =~ .
a—y/  V(@ay-g5

therefore w;—-».ia&rers“% -+ (2ay — 4 + B, where & is another
A\
constaniﬁt\: .
1§ Shews that the required curve is a cycloid with its

bage\ orizontal, its vertex downwards, and a cusp ab the
upper point.  We may suppose the origin at the upper point
(80 that 2, = 0, and then 2 = 0.
V' Here H, - H, = !: 2y ] - [_&]

Vg1 +p5] ¥y (1 +27))

1
=723 {(p89), — (pbyi.

As we suppose hoth the extreme points fixed Sy, and &Yy
vanish, ang therefore Il — H, vanishey :
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The constant @ must be determined by the condition that
the cycloid shall pass through the lower given point.

Suppose however that only the abscissa of the lower point
is given, and not the ordinate. Then, as before, K, vanishes,
and H = DR Now 8y, is arbitrary, so that in order that.
H, may vanish, we must have p, =0; thus the tangent(tp,
the cycloid at the lower limiting point must be horigomtal:
This condition must be used in this case to determin® the
constant a. RO

304. We may modify the preceding problem by sup-
posing that the particle does not start fromi\rest, but starts
with an assigned velocity. In this case we Will suppose that
the axis of w is not drawn through theaipper point, but is so
taken that the velocity at startingsig\that which would be
gained in falling from the axis of s avrihbraphbrafiyed gbint,
The solution remains as beforeg\the cusp of the cyeloid is
however no longer at the uppém fixed point, but in the axis
of @. This might have beenanticipated. For let ACB be
an arc of a cycloid, havingits cusp at .4; then this is the
curve of guickest deseéht from rest at 4 to B, and there-
foro OB must. be the-gutve of quickest descent from C'to B,
starting with the{éjmity at Ol

865. To find the curve connecting two fixed points such
that the axca’between the curve, its evolute, and the radii of
curva,ture\é,t its extremities may be a minimum.

(Art. 157 the expression which is to be made a mini-
mummay be taken to be
2 :" . £ 242
SN j 1+ de.
x G

Here V involves only p and ¢; and therefore, by Axt. 360,
for a minimum we must have V= Qg+ C,p+ C,,

) 248
that is, (1";3” = (1+39) g+ 0p+ 0

Cp+Cla_y
1+

thereforc
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By integration

M e
Cytan”p + ("“13’ - pf—‘ =4+ Oy, (1).
Algo (_GLF”’_WLQ?J‘}_? — 9 ¢
(1 + pe)g ’ i
1 i ¢ '\”\
therefore by integration, € tan™p — Ollp;;;i-‘ ~ 4y + copistant;

add C, to both sides of this equation, and we hmie(”}g
an! P(_f-?;}" -4 _, v ’Z\\ 2).
C tan™ p 4 i+ =4y 200 (2)
Eliminate tan™p from (1) and (2) ; /b
\ N

(Cop~ C)F

.cl.l:u'aulj]arar‘y.t:-rg.lm;_‘;psa =4 Osy - fL (’:1?"‘—’_ 02 C— ¢y Os ’

. '@”.‘::_‘
therefore /(145 = gl oL,
A1) 3

where B is such that 48 =C’2 C,— 0.0,

Let s denote thﬁ;]f&lgth of the arc of the curve meast{red
from = fixed poikfy then, by integrating the last equation
we have AN\

@75+ 0=(Cy - Coi B)

This ShexY(Q.'th&t; Lhe requi_['ed Curve iS a cycloid ; els) A_I‘t;. 72.
Uy < 04 B =0 is the equation fo the tangent at the ver-

tex afthe cycloid,

,,\‘f{'"\ {e must now examine the cxpression H - H; we have
» 0.
, H <3y, (P— @) To0

&2

d
=i, (P-29) 3,

As the extreme

b are o 5 1
vanish ; thus poluts are supposed fixed, &y, an 83."’

leapl.Q_U 'H;=3POQ{|'
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Suppose we impose the condition that the tangents to the
required curve are to have fixed directions at the extreme
points; then &p, and 8p, vanish, and A, — H, vanishes. In
this case the cycloid must be determined from the conditions
that it is to pass through two given points, and its tangents
ate to have fixed directions at these points,

N

If, however, no condition is imposed on the values of R 311.\
the liinits, we must have @, =0 and Q,=0, in order \that
; [y} “l
{I, — B, may vanish, Now Q=— (-I%Ti)—, and thefrad’ius of
N N\
curvature =(l—+ﬂ. Thus the radius of \cutwature must

q . . .
vanish at the extreme points, that is, the-gyeloid must have
cusps ab those points, A

wew.dbraulibrary.org.in
366. To find the form of a solid”of revolution, that the
vesistance on moving through afitid in the direction of its
axis may be a minimum, adopting the usual theory of re-
sistance. N\

Take the axis of 2 2§ the axis of revolution. Then adopt-
ing the theory of resigfance which is explained in works on
Hydrodynamics, th&@xpression which is to be a minimum is

Vo D &) yps
P s d.
o\ oy 1+P

Heﬁw}’;involves only y and p, and therefore by Art. 357,
for a fMhimum we must have
N V=Pp+C,

I
\ s

\ ] i :f}‘ L sp-! I p.'i .
t} £ 5 L -
1at is, 1 5 y(l L+ O

2 3
therefore ./ N )
A+p)

This is a differential equation for determining the required
Curve, .
LG, 23
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Integrals with Umits subject fo variation.

367. 'We have now sufficiently explained and illustrated
the method of finding the maximum or minimum value of an
integral expression involving one independent variable, wheny
the limits of the integration are supposed invariable. Wé
shall proceed to some extensions of the problem; and\ye
begin by considering the modification which arises [rafftysup-
posing the limits of the integration variable. N

Suppose, for example, that we have two givgh curves in
one vertical plane, and that we wish to fipd\\the curve of
quickest descent from one of these curvei\tg"the other, the
particle starting with the velocity obtai@d in falling from a
given horizontal straight line. Here'&We have fo find the

v dbpaitibedrybighithe parficle is to lad¥ve" the upper curve, and
the point of the lower curve toward$¥hich it is to proceed, as
well as the path which ii is to_dégeribe. We have therefore
to effect more than in the exdmiples hitherto cousidered, and
we shall now explain how We'may proceed.

We know, from what has been already given, that the
curve must be g cyelead with its base horizontal and a cusp
on the given ho i@‘n,t’al straight line. For suppose any other
curve drawn froni\any point in the upper curve to any pontin
the lower; thisjeurve cannot be that of mivimun time, for we
know thaty Without changing the extreme points, we can find
a curvesof/less time of deseent than this curve, namely a
eycloidyvith its base horizontal, and a cusp on the given horizon-
talhne. Since then we know that the required curve must be
such a cycloid, the part of the problem which depends on the

~Calenlus of Variations may be considered solved; and we
\“may investigate, by the ordinary rules for maxima and minima,
" the position of the particular eyecloid for which the time 15 &
minimum. In fact, taking any arbitrary initial and fin:
points, we may find the equation to the cycloid passing
through these points; then the time of descent will becowe
a known function of the co-ordinates of the initial and final
points, and we may determine for what values of these ©0-
ordinates the time 13 8 minimum.
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368.  We have shewn in the preceding Article that it is
not absolutely necessary to make any modification in our for-
mule 1n order to include the case in which the limits of the
ntegrafion are supposed to be susceptible of change ; for the
Process already given, combined with the ordinary rules of
the Differential Calculus, would enable ns to solve any ex<
ample. Tt is however convenient to bring together all that ig
wanted for solving such examples, and accordingly we shail)
now supply the requisitc modification of our original for-
mule.  As before, lat W\

U=|"Via

4
'l #;
L4
Ty v ’\

&

Suppose that in addition to the change wfy into y 4 8y
the limits &, and w, are changed into gz, and =, -+ da,
respectively. In consequence of this change of limits {7 re-

celves the ncrement wwi. dbraulibrary org.in
Fity iy &3t dy
[ vaw —f i
vy . ': My

that is, neglecting squares and higher powers of da, and de,,
U receives the increment”

o
Ve, ~ Vg,

If we anuex thigo the expression already given for 87, we
shall obtain, tie. Complete change in IF consequent upon the

variation of\y:, and the change of the limits.

369, (X no condition is imposed on the limiting values of
the od-ordinates, the additional terms Just obtained,
PR N Kdml - Kd"rw
\eat only be made to vanish necessarily by supposing ¥, =0
and V,=0. We thus introduce two new equaticns in ad-
dition %o those which are obtained from H — H =0; and at
the same time we have two new quantities to deterinine,
nar_nely, x, and =,. Hewever, a more common case ig that in
which the limiting values have to satisfy given equations.
Buch a case we have already indicated in' Art. 367, where a

252
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curve 15 required, the extreme points of which are to e on
givén curves,

We will consider that limit of the integration for which
the quantities are distinguished by the subseript 1. Leg

Y=y+ 8y,

then if there had been no change of the limit. the exthemme
values of the variables would have been x, and y"before
variation, and x, and Y, after variation, If hosever @, Is

changed into x, + dx,, we have Y, changed intgl’

ay. 1d°Y
{Y+ dz da, + 2 do?

that is, neglecting squares and highcy’_ﬁ}fvers of da, we have
¥, changed into ¥, + (d}—r) daz,, that s, neglecting the product
w.dbraulibrary.org.in de /, O

S_pldwl, mto Y, + 8y1+ (gg) i:ﬁ: Suppogjng tlien that the
LTRNY

given relation which is 0% be satisfied by the cxtreme
values is '

(@ +30)

AN Y =4(X),
we must have \\ %= (),

and also N\
o |
1+ (L) do= v (ot ) = (a) ¥ ()
to @?ﬁﬁlﬁ% order. Thus

\ [ d? ]

Ry 8 = ..._.‘Z !

| :"\:. 3 yl’. {1# ($) d$J‘l dmj_'

N This gives a relation between &y, and de,, so that we can

-eliminate one of them from the complete value of 6T
Similarly, the refation can be found between &y, and A%,

In geometrical problems %) is the tangent of the inch-

natiqn to the axis of » of the strailght. line which touches the
required curve at the limiting point; and ¥ (z,) is the tan-



UALCULUS OF VARIATIONS. 357
gent of the inclination to the axis of @ of the straight line
which touches the given curve at that point,

A particular case may be noticed which is sometimes
useful.  Suppose the complete change of ¥, 18 to be zero;

this gives 8y, + (j—g) dw, =0; similarly if the complete change :
1 ¢ \A
of y, is to he zero, Sy, + (g—:;) da, = 0. -

570. We may illustrate the preceding Article,b;f a‘,"ﬁgure.
Let 4B represent the required curve, and }BVithe given

¥
W Tibrary.org.in
S e
A\
RN
AN
\\ v
A/ b
m x
P \a

curveofi Which the extremity B of tho required curve is to

lie. ¢ A’B’ represent the curve derived from A B by

asoribing the variation 8y to each ordinate y. Draw BC and
0D parallel to the axis of % and BD parallel to the axis
“Ofe.  Then ultimately '
\

.BO= 83;1: _B_D = dxl’ B’D = 1,{/"(.’1}1) d;l?l, GN.D = (S%) dml.
1
Hence B¢’ = {q,’ (@) — (%) } de,. Thus the geometrical

interppetat-ion of our process 1s that if we reject quantities
of a higher order than those we retain, we have %’ ¢ = B(
ultimately.
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371. Let usnow consider the casc of the brachistochrone
problem which has been enunciated in Art. 367,

Let the notation be as in Art. 363, Then

SU=V.do, — Vidu, + {7—?’—5'2’—] _ [_P % 1

by U+p0), LTy i+
R ATYN Oy
+J:q, (A\f - @-) Sy de. \} 4
As before from the equation & — (ff—l =0 we dpducd
o )
N\

Vi L+ 2%} =/ (2a); v
1, >
thus 80 = Vda, — Vdu, + i 1@%3},,"# (p89)k

-dbr a‘fﬂgfaﬁé’ SBibke that the equatioiyto the fixed curve from
which the particle is to startNs ¥ =y (X}, and that the
equation to the fixed curve apvhich the particle is to arrive
is Y=+ (X). Then by thetpréceding Article we have

%, = {‘P’(m) P }l E‘mv 8y, = {X’(&) = plo day.
Thus the value of %°¢an be put in the form

8 U:-:\}dx; ~ A dim, ;
he RV 4+ P il —
WLEre :::\)\’4 Vl+)\/(2&) {‘1[" (m1) P _
0 Vil+p®  p
\J =l 1 L — 3]
Q Vi, aee)
” ‘:":" - 1 1 RS
\;\, - 4\:“(2{1) { +P1‘# (‘61)53

’ and similarly

1 .
}"0'__'@ {1 "!'poX(wo)}'

Since de, and dm, are arbitrary, U/ will not necessarily
vanish unless A, =0 and A, =0, Thus

]

1 ‘}'p{l{/‘ﬂ(.’b‘l) =0 and 1 —f—})o 'X{(,{(;O} =)
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and these shew that the cycloid must cut each of the two
fixed curves at right angles,

372, We have hitherto tacitly azsumed that the function
V does not involve the imiting values of the variables or of
the differential coefficients. Suppose now however that V"
does involve @, &, ¥, ¥y, Po» Prsees ' O\

(1) Suppose that z, and =, are not susceptible ,‘of.\any
change. When y is changed into ¥ + 8y, besides {He\varia-
tion we have already investigated, V will receivéyan addi-
tional variation arising from the change in gjnw,,... which
oceur explicitly in V. These additional termsin 8V are

NY;
av aV aV dV.E
0y + =8y, + -— Sp, + =P, + ... ;
dy, ¥ * dy, % " ap, po_l_dff’p e
wiwidbraulibrary.org.in
gnd consequently the following, ‘additional terms occur in

N

‘m (T av 3.’;3’1} _ dV _
o et Iy, U g, ot ot o

Now 8y,, 8y,, 8p\0b,, ... are not fanctions of the variable
#, but only of the\limiting values of z; we may thereforo
bring these qualbities outside the integral sign and write the
additional tamg thus,

">». . )
AV o EmdY ngl
3 [y dern [ e

~oaThus the oceurrence of these additional terms will not

w\'aﬁ“ 2ot the reasoning by which it is shewn in Art. 8534 that we
‘must have K =0 in order that I may be a maximum or
minimum. These additional terms taust be annexed to the
exprossion M, — H,, and the whole then made to vanish,
Since the relation between # and g is supposed to he found
from the equation K= 0, the expressions under the integral
S1gns In theseadditional texms become definite functions of «,
80 that the integrations which are indicatod can be effected,
at least theoretically,



rw.dbraulibrary.org.in

.’\

o\

\ .
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(2) Suppose that =, and z, are also changed, and let
them become «,+dz, and @, + i, respectively. Then ¥V
receives the additional increment

4V av]
() o+ [, ] e

v avy . .. LS
where -——] and | 5— | indicate complete dillerentialcoctfi-
_ dw, | da, N\
clents; that is to say, we are to remember thag~g, occurs

implicitly in y,, p,, ..., and similarly for .

Thus besides the additional terms we Jawe already given
8/ receives the increment

LA efdV
dz f 1:—-1 do + d; 1\[--] o,
0 e i, ﬁ J:;’-D d;cl

and this expression must be anmlexed to the aggregate formed
of H, — H, and the additional\térms already given.

373. For an example' we will take another modification -
of the brachistochrox{e problem. Suppose two given curves
in the same vertig@l plane, and let it be required to find the
curve of quickest descent from one of these to the other, the
motion commeéncing at the first curve,

Let‘tlié\ axis of ¥ be measured vertically downwards;
let y, Beythe ordinate of the starting point, then when the

ordinate is ¥ the velocity is o/{2g (4 — y ).
P ¥ 18 {2 (y — )}
8 Thus we may take

nV(4ph
U= Ly
w0 V(= Yo)
We have then to chavge y into y —y, in the solution of
Art. 371, and to add to the expression there given for
the terms found in Article 872,

H NI4p) . e lue
ere =y that y, is the cnly limiting value
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which occurs in V. We are therefore to add to the former

value of 617
a7 a[dV
ez —{mu dy, da -+ da, f a:g [dmu] de;

dV 4V dy N\
and ) =, ), .
Hence by Art. 371, after putting K =0, we have \\\\
M
ST =, — Ndw, + {3 i, + (%E)o rfzs-o} f :;g% an,
where A, and A, have the values assigned in A(?;:B\fl.
Now in the present case A

dv _ dV N a3
d?’o - 3'57 ==—d wonnglraulibrary . org.in

therefore {mlﬂdmz P, 7:;;3;;3]0 =B,

Ja, dy, V(2a)’
AW .
and 5y, + (d_‘& da, =+ (#,) dw,, as in Art. 371,
Thus 80 = Rf\@;‘—' e, + % (p, — p,) da,
o~ 1
ANV = 14 pay ()] de
L > 1 jl"!’ L} 1
N ¥(2a)
O g e @)
QO gy e ) i

{

\"Then by equating to zerc the cocficients of dw, and das,

~\we have

/

T4paf () =0 and 14 py (z)=0,
so that ¥ (@) =P ().
Thus the cyclold cuts the lower fixed curve at right
angles, and the tangent to the upper fised curve at the

initial point is parallel to the tangent to the lower fixed curve
at the final point.
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Integrals with two dependent variables.

374. We have hitherto supposed that 17 ix a funetion
with only one dependent variable; let us now suppusce that ¥V

is a function of two dependent vuriables. O
Let V" be a function of =, y, =, and the diﬂ'erential'm\-.
efficients of y and z with respect to »; let \ N\
2 U
U= f Vidz, N\
Ty Ve ’

and let us investigate the variation in the valuesol {7 when y

and 2 reccive variations.
By proceeding as in Art. 352 we shall\abtain the follow-
ing result, SV
MW\
oo dbraulibey g, + J, — J, + [O{Koy + Lss) d,
T

where the symbols have the fellowing meanings :

dy, as before, denotes an anﬁjﬁrary variation given to g, that is,
8y is an indefinitely small arbitrary function of «;

K, as before, denot;es"‘}\

N\

Z¥" d 4V g4 v _
"~.:...dy dx(—zy—i—d_‘r‘zdyu ieay
where "dz\"g_rj’ g{z’ ... are partial differential cocfiicients,

ady L 4V
N gy
Jelative to @

\3

are complete differential coeffictents

8z is_an arbitrary variation given to z, that is, 8z is an in-
definitely small arbitrary function of 2

L is relatively to z the same ss K relatively to y, that is,
L dV_dadv & av

dz dods Tddds T

H, — H, has the meaning already given, and J, - J, is rela-
tively to = the same as H, — I, relatively to .
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375. We now proceed to find a maximum or minimum
value of I on the suppositions of the preceding Article.

(1) If v and = are independent, in order that &7 may
certainly vanish we must have

K=0and L=0;
and alsc HI-—EG—PJI-—Jﬂz(). o8
The values of % and z in terms of x must be ‘fgﬁﬁd by
solving the differéntial cquations K=0, L =05, and the

arbitrary constants which occur in these soluions must be
determined by equating to zero the coefficientS.of the arbitraty

... /o dz) hich
quantities dy,, oy,, kS d,’_m)u’ ... 67, le,’(i% u,...w ich oceur
inﬂ;—ﬂ’o.;.l}'i_t}‘n_ ‘.‘x\

(2) Suppose however that anﬂwvapﬁ?mﬂihldepem@m,
but that they are connectedly® the relation é (2 y 5=0

which is always to hold, Simnce this relation is supposed to
hold always, we have alsal™

gg){m, v+ Sy, 2+82) = 0;
and therefore u}t'{ﬁiméely

A ¢
2 AN

"': :” d(,‘b : d_.¢ =0
;’1\'} d—yﬁy—l-dz 8z B
) xt\”. " . .
TGS the integral [ (dy + 182) di becomes
,\‘\ . &y
N N 4 d¢
NS L7
)~ - _ﬂl Sy d,
K 7% 5
kY dz
and in order that this may vanish we have the single cons
dition
K _L,
&5~ d
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and from this differential equation combined with ¢ {m,y,2)=0,
we must find y and 2, .

As before, we must also have
I, ~H+J,~J,=0. Q

876. For an example we take tho following problem ¢
determine a line of minimum length on a given curved gurfacé,
between two given points, A

' 4 ’.‘
Here we have e \

._rl dy\g dz)z ) !? ..,:\'\!; 2
= - —_— = Wik 7 - dﬁ'r
g J,o\/{1+(dx,-l+(da; }d’w ‘/%\‘ F 57 27 dw;
d Y N4 2 _
thus K——- d_lf m, Ij\-v C(?.E m:
let ¢ (@,9,2) =0 be the equation tothe surface on which the
wwhdbrieh brTeatlinhe precedingyArticle we have, as the con-

dition for a minimum, R\
4 RN\ . d_ g
do /(1 + 97z da VT 1y 52
B e

’\s(y" dz
Let s repragént the length of the arc of the curve; then
:‘1\3:” _d_ﬁf and _z' ____2@-
AR T ds T (i ) d
’,&M’ the above equation may be written
..\

dy  dz
o :"\;; @_ d&z . 1)
™ TE TG e { )
dy dz

¥rom this we may conjecture by symmetry that cach of
these fractions is equal to

dix
ds®
d_¢. »
PPy S
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365

and this we can demonstrate; for from (1) each of the frac-
tions by a known theorem of algebra is equal to

dyd®y | da

ds ds®

dydep  dz

Esjd§+d'3

and gince the equation ¢ (z, ¥, 2} =

the curve, we have
dg de , d$ dy
deds ~ dy ds +
alzo by a known theorem

deds dydy
dsdF Tds s

diz.

ds ds®

5
ds

0 holds for every poiil\t of

N

2N

7%
S D

dz ds NNV
K7
-
dedz _
d@@\'-.T,Qbraulibrary,org,jn

Hence a line of minimuj:r:&'l'ength is determined by the

symmetrical equations &3

To Ny dz

& &
\\% - % _ EE .......................... (2). B

\ _&;Q_'; -d—y~ -d.—z

¢

It igoﬁrdved in wor
that theleéguations (2)
of the curve

contains the normal to

ks on Geometry of Three Dimensions
shew that the osculating plane at any

the surface at that

poi
paint. Such a curve is called a geodesic curve.
N> )
"\ 877. Leb us suppose that instead of being drawn be-
\/ tween two fixed points, as in the preceding Article, the cu{lve
et

15 to be drawn hetween &
@, correspond
We have to consid
Art, 871, we find that these are

dy

Vldx1+ —% (ﬁ)‘ 59'1 +

fixed point

to the fixed poin, and A
or the terms denoted by H+dJ, Asn

and a fixed curve.
z, to the fixed curve.

—]]7;., (%)1821.
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Now since the extremity of the required corve is to lie on
a given curve we may suppose that at this cxirvemity there
are two relations to be satisfied, which we may denote by

b= ‘!’ (wl)’ 5H=X (\m:)'
Then, as in Art. 369, we shall ind that

] d , dz 'S
Sy = (¥ le) = () [z 8= fu e - ()} 0D

Substitute in 7 +J,, and by reduction we obtaing 3
dﬂ?i dy) ) d;-.".'-\\ L g.
T ¥ )+ () vl

and in order that this may vanish we myg}{ have

K
www.dbraulibrary,org.}n(j_i) 1},’ (;31) +(§é) X'(ml) =0,
1 \ 1

S

\

™\

\
) 3

and this shews that the required carve must cut the fixed
curve at right angles, W7

Suppose that fromea fixed point on & given surface geo-
desic curves of a giver length are drawn in every direction,
then the other emds/of these geodesic curves will form a
locus such that @very one of the geodesic curves cuts it at
right angles, (For the locus may be taken as the fixed curve
of the pregeding investigation, and so by that investigation
any geodesis curve cuts the locus at right angles.

7\NW

O Belative Mavima and Minima.

*

V978, A class of problems still remains to be considered,
) “Called problems of relafive maxima and minima values. Sup-

pose we require that a certain integral U7 shall have a maxi-
mum or minimum value while another integral W, involving
the same variables, has s constant valne; for example, we
may requirc a curve which shall include a minimum ares
under a given perimeter. Here we do not require that 87
shall always vauish, but only that it shall vanish for such ro-
lations among the variables as give a definite eonstant value



AN " .
(only y and p; hence for a mazimum,
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to W; that js in fact, we require that 87 shall vanish for
all guch relations among the variables as make §W vanish,

The problem is solved by finding a maximum or minimum
value of U+al, where @ denotes a constant; for in this
solution we ensure that SI7 + a8 W necessarily vanishes, and
thercfore 8 I must vanish whenever 8W does. The constant
a4 oceurs in the solution, and its value must be determined
by making the integral W have the constant value whick is/)
supposed given. O

If we require that W shall be & maximnm or pifimum
while I remains constant, we shall in the same way proceed
to find the maximum or minimum of W4 Z)U’,‘}here bisa

constant ; and if we suppose b =% , We o}‘;ufsi\ir} the expression

(U4 aW), Thus the same so]utio.r‘f,\vﬁl be obtained for

1

p . i dbraulibrary.org.in
this problem as for that in which JP8 to be a maximum or
minimum while W is constant. &3°

We now proceed to sorge:"éxémples.
379. It is requiyj'e@"to find a curve of given length join-

ing two fixed pojngé, 30 that the area hounded by the curve,
the axis of &, and, erdinates at the fized points may be a

maximum. ()
e o ,
Here, :I?=j yds, W=f J(L+p") dars
923 0 E .
let &Ef—l— ay/(1+ p%), then we have to investigate a maxi-
mliizl;\ value of Fl Vds. Under the integral sign we have
) by Axt. 357, we must

have
V=Pp+0,
a 2
that is, y+ay(l +Pe)=7(T§—P§+On
hat i % Q.
that 1s, y+g(1+ 5 A
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Thus 14 pt= e,
RCEr)
de\' 1 (€ - —y)
therefore (@) ST (- y)ﬁ,
therefore z+ O, = {a*~ (U, — ).
This shews that the required curve is a circular are, O\

Since the extrome points are supposed fixed, the fart of
8V which depends on the limits vanishes. N\

The constants C,, C,, @ must be determmﬁ\l\by making
the circular arc pass through the given fixed points and have

the given length between them. O

N
380. Given the length of a curmv “find its form so that
et lidndepibeofithegeantre of gravity may be a maximum.

Take the axis of @ horizontal\and the axis of y vertically
downwards. Let & denote the Iength of the curve; then the

depth of the centre of g{awty is z [ y /(14 p°) d, and the

length is f LS, Fde
2

1 2
Let N’:::V=Ey«/(l + 4+ a /(1 +2%,
p X '\ =51
then we, 'rQqulre a maximum value of [ Vida.
~ o
'Hwere by Art. 357 we must have
; QA V= Pp+ C,,
~Cibat s,
\ ) 4
4L +p)+ay( Py, a
V( p ) ’\/( +Ps) bi\/(l +P‘2) ~/(1 +p3)
b
therefore _¥+ed 0,
iETS e
therefore 1+p*= (y -+ ab)®

b}los. 3
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da 1
and thercfore @: VG + ab):’ 0

hence z=Alog[y+B+ J{(y+BF—-4"]+0,

where (), is & new constant, and 4 = 5C| and B =ab.

This equation shews that the required curve is a catenary’,
If the ends of the required curve are supposed fixed, the terfas?
depending on the limits vanish, and the constants 4, K, O,
must be determined by making the catenary pass througli the
fixed points and have a given length between them’ySuppose
however that instead of being fixed the ends ale Gnly coy-
strained to Iie on fized curves. By proceeding\ae’in Art. 371

we obtain the following limiting terms: N\

Vld‘r'% - Vndmo + Plsyl _)%8 a*

.

Consider the terms with the suﬁix;.l\; gvgh%‘{ﬁ}ﬂf@ﬁj@}éﬁm
s (¥ g JH )_&_y!_
that is, (bl + a) JL+p5 d:tf{: ~('b +a NIETN

(m)j’th.e equation to the fixed curve,

Now gupposing y=1
A dzr,, so that the termn reduces to

we have 8y, = [y'(e) — g}
O\

4&}},@; i £

To make Ahis vanish we must have -+ pp/(z) =20, for
y, +ab canfiob” vanish, s then =, would be impossible. A
similar résult holds at the other limit ; and thus it appears
that bl{é,}éftenary rust cub the fixed curves at right angles.

O\

+881. Given the surface of a solid of revolution, to find its

- Mwture that the solid content may be a mayimum.
clution. Then the

\ W

\ Take the axis of = as the axis of rev

surface is 87 J‘:y V(L + p% de, and the volume is W-L, y'dz,
Let V=g°+ay /(1 +p"); then we have to find & maxi-
mum value of f ledzc. Here by Art. 35% we must have

&g
V= _P}‘.I + C,
2
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that is, P ey {14 p7) = v'—((;y—::-;_f) +
thercfore ¥+ m‘f‘i{_}ﬂ =

This is a differential equation to the curve which would by
revolution generate the required surface. Supposing thabihe
ends of the generating curve are required to pass hirough
fixed points, the terms at the limits vanish. A

1f either of the fixed pointsis on the axis of téyolution, the
galue y =0 is to satisfy the equation to the cing}'c; thus C=0

Then the general equation reduces to

p ¥

ry 2 =0 therefore'x;:\l- e — =0 |
) )T T
Wwwt%ngagl\lrelsag%ll}%%ﬁr arc as the generating curve.

382. Given the mass.,ofj"a.‘solid of revolution of uniform
density, required its fornkso that its attraction upon a pointin
its axis may be a maxmum.

Let the axis 6f "% be taken as that of revolution, and the
position of the "ftracted point as the origin.

Tet theyselid be divided into indefinitely thin slices by
planes pérpéndicular to the axis of . If y represent the
radins/o8a slice, @ its distance from the attracted peint, & 1ts
thicknéss and p its density, the attraction is (see Statios,
Ghapter X111} :

¢

~0 Dok {1 - *--r—‘ry—g} .
O : Vi@ + )
Therefore the whole attraction of the solid is

oo | {1 - _”__} de
P L] '\/(a:ﬂ + yg)

~and the mass of the solid is

™| y'de.
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Thus let V=1- + ay”; then we have to inves'i

-
Vi + )
gate 8 maximum value of f V.

The condition N—%;I—_:—!— ...... =0 reduces herc to A -

. ﬂl?}'
that is, Say + — =0
T gt S

therefore 20 (&' + ?fg)& +2=0 “\ 3

If we suppose the limits , and =, susceptib}e of ehur
we have the limiting terms V,dz, —Vidw,; addto make 1),
vanish we must have V,=0 andV,=0; thigledds to 5 — ) ., |
%=0. Thus the solid must be formed/ by the 1"(?:\-"111115:.:j
round the axis of 2 of the whole closed clél]i?ve Q?Eﬁspgi.wé o

1 WL radl
the equation 2a (w‘-|'-;'y“)§+m=’q; the value of g mus! !
found from the condition thapdbe mass, and therefor,
volume, is given. N o

Qm@f& Integrals.

o\ .
383. We shalllpbw consider the problem ¢f findls
maximum or H]jll- m T“:&].ue Of a dO%bJB i’ni&eg?-qg ; an .i]d”]"-: !
gin by finding(the variation of & double integral, PR W
Let # ke 5’ function of the independent Variableg |
o N\ . wangd ,
pres%f\tmknown; let 7 be a given function of 4 -
. . ER

& & . L] .
and (?_;; let U= f f Vdz dy ; the integration i o
4 TN I . m.' yo u I
:..Eﬂ‘ected with respect to y first, and the Limits y P
supposed given functions of & Tt is requireq i angd ,,
what function » must be of = and y in rder i Btery,;,
have z maxirmum or minmum value, at Iy .

Let 8z denote an indeﬁm!:.el_y small arbitry,
and y ; 1et 8V denote the variation made in i neti,,
the variation 8z, and let SUdenot_e the variati, g poe -
we have first to obtain an expression for §{7, n iy o sii\
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Let I denote the partial differential coefficient of V with
respect to z M the partial differential coefficient of ¥ with

respect to d , and N the partial differcutial coefficient of ¥
with respect to &, then we have
dy’ .
. ddz TdSz N
3V = Ldz + Md + N - ,\“\
where, as heretofore, we confine ourselves to the ﬁrst‘powcr
of the indefinitely small quantities. Ilence “'4

U= f f (L8z+11&+Ndo“)Zt‘\d

The value of 87 may be written t{ﬂ;s\

www . dbraulibrary.org. éﬁ
i dN
T — P S Noz
Y (L - dy)a d(!z)+ ( h

and therefore X ‘;

U= f”f( @—%)Bzdad_y

+f \}ﬁ‘ (M82) de dy +f

The dlﬂ'&rentml coefficients with respect to o and y which
are here leca.ted are complete differential coefficients.

&lﬂﬁ f f"‘ —— (N8z) dzdy =J‘ [(N82), — (N82),} d,

\svhere (Nd2), denotes the value of N8z when y, is put for %
i y“and (N3z), denotes the value of NSz when ¥y, is put for ¥

And by Art. 216,

fu" ct (\13(.,) dudy.

# . c?y
L‘ L On)ay=2 f " Mordy — (M52), B+ GG

where (Mdz), denotes the value of M8z when y, is put for 7,
and (Moz), denotes the value of M8z when v, is put for y. -
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- o
Therefore f [ a% (M 8s) de dy

< @ - i

- ( [ ”' M3z fzy)Ml - ( M d"”')xaz,

v Yo

% dy, d O\
-/ ) {(MSz)I L (M'o‘z)uﬁ}'cix.\'

Therefore U= [zlfy] (L - Lfi% —dN) 8¢ du dy O

vt Yo @_

+ f . {(NSz)l - (st)o} dr &
-2 \J

v ([ arse dy)x_%“\—,@(’i MBedy)
—(: {(MSz?E %%li‘fﬂ 'Siz’ﬁf%}b&w”g‘m

It the limits y, and ¥, are} gonstants, the terms in the last
line vanish. N

Of the four texms A hich compose U it will be seen that
the second is similpg’;\m character to the third, and might be
expressed in a similar manner. o

We have gipposed that the limits of the integrations are
not susceptible of change ; if they are it is easy to see that
we mus:t\é,dd to the expression for SU the ferms

< \“\ (d’m‘ f:: de) - (dw [ : de)x_&

%

A 2=7
2\ :’ &
+ [ (Vidy,— Vody) do
vV » : :
In geometrical applications the limits of the integrations
rmined by the

with rcapect to @ and y will frequently be dete
perimeter of a closed curve; in this case g, =y, both when

th
r=wx, and when z=2; and therefore f Mbz dy and
»
dao [ V dy vanish when =, and also when 2=2,.
Yo
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384, In the valuc of 37 found in the preceding Article,
there is one term which is a double integral involving 8z
under the integral signs, and various single integrals de-
pending upon the limiting values of 8z By the method
already used in Art. 354, it will follow that 8U will nots”
certaiuly vamsh unless the coefficient of &z under the doubl®
integral sign vanishes; thus for a aximum or mini'mmsi

value of U we have as a necossary condition O
- dM 4N N
L= = =0 D

This is a partial differential equatiehdor finding 2 in
terms of @ and y; and we may say that ‘the arbitrary func-
tions which occur in its solution m@¥t“be determined 80
that the remaining terms in 8T apak vanish, But the dif-

ww‘g%lltqupgrai{lrg%fg}jpg the partiaNifferential cquation in

PPN
Y

general prevents any practical exdmination of these terms
at the limits. &N

LR Y
<

885. As an example}let it be required to determine a
surface of minimuwm area bounded by a given curve.

Here by Art, 17‘0,\

U=f:: i\/{l + (;g_:)! + (%)9} dxzdy ;

let us put E@ fisual
d_ & de
dy_-g} dmx""?: dx d;’/_ 3 dyﬁ

$

o~z d*s d*z d'z _
\\..ud:;—}?;

=1t

/-
&

'\.f':’o The condition for g minimum rednces to

dM dN
&ty =Y
that g, to 4 P d £l

gt A= 0

de /(1 +p +9)+dy«f(1+13 +°)

that is, to ’
L+ ) ~(pr+gp+eQl +pt gt = (ps+ gt =0,

that is, to 1+ 7y — Zpgs + (1 + 5 ¢ = (.
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Tt iz shewn in works on Geometry of Three Dimensions
that this equation indicates that the required surface is such
that at every point the two prineipal radii of eurvature are
equal in magnitude and of contrary signs.

Since we suppose the boundary of the required surface
to he a fixed curve 8z vanishes all round this boundary ; thys
the terms relative to the limits in 877 all vanish. & \J)

Ny
Discrimination of Mawima and Minima valthes.) .

386. We shall now give some examples w‘h;bﬁ illustrate
the second part of the investigation of maxipe and minima
values of integrals; see Art. 349. o\

Consider the example of finding ‘t.}:[’e;\sﬁortest line between

two glven points. Here . \a?ww.dbraulibrary.org.in

F=A1 )l 1'17:]_: Vds.

Suppose changed“iﬁ’;é ‘4 + 8y, and consequently p into
Pt SPI;)Pput. g+5p ir@ead of p in V and expand; thus ¥

becomes . \
L p¥p (3p)
Pt 1 _P,___g_|_____
VP ) T 2+

AS .
where thestérms which are not expressed are of the third and
highez-otders in &p. Thus we obtain

R L S TN @ gy
VIR 2)e (1 +p%

The first of these terms is what we formerly denoted by
877, and the investigation of the minimum value of U 80 far
as 3t hag hitherto been carried, consists in making this term
vanish. Supposing then that !:his term vanishes, and neg-
lecting terms of the third and higher orders, we bave

1 ) (8}))! dﬁ'
SU=7| —F g O
2 f o (1+ )
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If wr — 2y 15 positive, vvery olement of this integral is
positive ; thus 81U/ is pesitive, and therefure a minimum value
of U has been obtained,

387, Again, take ithe case of the Lrachistochrone, when
the extreme points are fixed. Here \

VA1) (YL O
V: -, U: : d . 4
'\/.?)‘ .[f__-'ﬂ ’\X;’/ 5 '\,}
Change y into y + 8y, and p into p+op; ,iafrld‘texpand
the new value of V. This ¥ becomes A\
VL) VU408 AT
vy 24! PR )
N\ ,
www.dbrauli-br3 (4% Q'\& (8-?])2 - gﬁy B_P;x + _g@%
syt 2° A+ 2 (L p)

oy,
s
N

and from this we can obtain*s I/,

Now by the prochs¥ of Art. 363 the terms of the first
order in 8O are.m{idé to vanish; then, neglecting terms of
the third and hlg})er orders, we have

5= Jf.@:%’gfcswﬂ_ poyly () g} e
AT 8y L+ ph 2t (14p9)
“{é}nave now to investigate the sigm of this cxpression
when ‘the relation between # and y 18 that which ig deter-

mined in Art. 363; and we shall shew by some transforma-
~\\tons that 7 is positive,

Since P+ = (2aph,
we have §07= fz’ {Wﬁ@’ _boydp + yd(sfiz} dw
»{ 8y 2y(2a)  4a(2q)

1 " {8a(8y pdydp y(Sp)g} dz.
2(2a)5jx.{ 2y y ' ta
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=R
3

%% the Caleulus of Variations are of a kind in whic
' infer, wi
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N poydp ,  _B@’ 11 @ (B g,
oW f ” dx % 2[(8_;:) dw(@)dﬁ’

and as the extreme points are supposed fized 3y vanishes at
the limits ; thercfore '

= p 8y & . 1= . d
-Ln --y—pd;c=—_§f% (By) E(Ey?) de.
a 1 4 2 ? 30— ,
Now E(®N_Y dp_p _ & P__ 2020 ()
oW dfﬂ L_?)l) y_p dy' yg— y yg—' . ys "'."' \

Therefore J‘%p Sgéip dm:% f " Sy’ 3®y:'§f. 7:3,
N 2 )

: 1 (= {8y | y@p)
and 3U=___f {--E— PAY, } .
2 (%)t 29 +\ 2%
Thus 8/ is positive, and therefore’a bnhukibt-aahis gfd/
has been obtained. A

The discussion is much siutplified by taking the axis of
vertically downwards, kegping = as the independent variable.

388, The precediny Article shews that it may be possible
to change the expression of the second order to which U is
reduced by ou;\qyfvious investigations, from a form in which
the sign is uhcertain to a form in which the sign is obvious,
A generglphecry with respect to suitable transformations of
guch tewhd-of the second order has been given by Jacobi;
for thi®weé refer to the works named at the end of the present
Chafpter.

Or may be observed that many of the problems discussed
h we may

ith more or less certainty, the character of the result

trom the nature of the particular problem. Thus, for instance,

we may perbaps see in a particular case that a least vaiue
rmust exist; go that if a solution presents itself, and only one,

which may be a maximum or a minimum, We infer that it
must correspond to the least value.

389. In the problem discussed in Art. 385 it is easy to
chew that the result really gives a minimum. Here
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I
V=y{1+p" +¢9 U= Lu ‘[; VL' + ¢ dedy.

=l

Suppose z changed into 2 + 8z, in consequence of which p

becomes p + 8p and ¢ becomes ¢ +8¢.  Thus T becomes O
z 2 PBP 9‘3{1 7 ‘\:\'
(Q+pvrgte—2PP 4% R\
PO g U O

L A+d) G | padpdy | (L+piee)
20+p" +¢) (L+p+ A 20ap’+ )t
............................ A
Then supposing the terms of tha\j{i}"st ovder made to
vanish, and neglecting terms of theNthird and higher orders,

w%cﬁﬁ‘@glibrar‘y.org.in RO
2 i 2 y 2.'_;‘: . ] 2
8U=%f f”' (1+q){3g)')3 2p95p59§(1+m(59) dudy
7 10 A +p + Y

1 I’mlfyz {BJ?“J\Q- (3g)* + (g 3}_’ —poy)’
2l 7 71 )

dedy.

Thus the,ferm under the integral signs is nocessarily
positive; so\hdt a minimum value of U7 has been obtained.
. RS

A
*\ Condition of Integrability.

\"\ '390. In Art. 354 we have found that K = 0 is a neces-
ssary condition for the existence of 2 maximum or minimum
value of the integral there considered. It may however
happen that In certain cases the relation K =0 is satisfied
identically ; this case we proceed to exeroplify and interpret.

Suppose we are sceking a maximum or minimum value of

- VM a4 ar
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Here V:g—-f%’f_[_?g:
¥ ¥ ¥y’
dV eyt
AT=__=_.§L+ Yy _ &y
g ¥ ¥ ¥’
_av_1 %y
&y ¥’ O\
dV @ ;"\: K
Q dy” han y 3 '\,}‘\.J
aP 2q__y 2w w0

N_E e a2y

P i R B S
f9y Yy Ay ND
—{—*”%—'—y——g—-r—g—. o

]

¥ ¥ ¥ LN
2 @ o’ . %ﬁfﬁ:w.dbraulibrary,org,jn

R
On collecting the termedt will be found that
CaoVap d'Q
| {M{\N &t |
vanishes. Thti‘s\{th’é relation K=0 is an identity in this
example, and™ye cannot obtain from it any value of 7.

In ;Ei?}efmmple we shall find that

r

$
£
2\

A\ . de,,.:"”_y_,'
OO : y
O hat is, the integel Vi can be obtained withoot. assigning
Thus if we wish to find a

/' the value of y in terms of &.
# . .
Vdz, we must investigate

maximum or minimum value of f
’ z‘ [ F
a maximum or minimum value of (%) - (?g—) . We are
i r}

therefore not concerned with the maximum or n:nmmum of
ion of the kind hitherto

an undetermined integral expresst
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considered, but with the maxinum or minimum of an eXpres-
sion frees from the integral sign.

This species of maximum and minimum problem is con-
sidered in some of the exhaustive treatises on the Caleulys »
of Variations; as it docs not present much interest we will
refer the student to such works, O\

'\

391~ We shall now prove universally that the necEssary
and sufficient condition in order that V' may helintegrable
without assigning the specific value of y iu tergslof o, is that
K =0 should be jdentically true. An egpfeision which is
integrable without assigning the specific valid of the depend-
ent variable in terms of the independcnt'ﬁtriable 14 sometimes
satd to be integrable per se, and is_safubtimes said to be ém-

mediately integrable. N
wwwf:lbraull’f:ralt'e org.in @

892, We first prove that™the condition is necessary.
Suppose that ¥ involves ziopand the differential coefficients
s Ay

of y with respect to uin;é o
w< oz

If the functioé:V’ is immediately integrable the integral

inclusive,

Lo
j Vds can be{eypressed in the form
2y s

AN
£ ). ) dy’ _.dgy ’dn_l_?j
\:\qb {"61’ Yo (5)1 s (\E)l yorrees . [ dxﬂ;l)l

& sfen (@), @) ()

o1 oe

SN ¢
) where the form of the function denoted by ¢ remains un-
changed whatever may be the value of ¥ in terms of x. Now

suppose that y receives such a variation as leaves the values
of y and its differential coefficients af the limifs unaltered;

then from the value of j = Vdx it follows that
%

"

3 " Vde=0;
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thus by Art. 352

& (dV ddv , 4 dV
[2on{ty -y de =}

But this cannot be true whatever 8y may be, unless.
. ¢S
oA, Edr
dy dady = da'dy « M
and 1unless this is identically true it determines y.as:’;, funetion
of o TFhus if ¥ is immediately integrable therelation XK'= 0
must be identically true. '
- AN . .
Next we shall shew conversely Qat\ if this condition
It

holds V¥ 4s immediately integrable. \I6'is usually considered

aufficient to say, that 1f this condifieh holds the variation of
\ Www.dbraulibrary.org.in

f " Vde depends solely on thePhniting values of &, y, and

= : " %

the differential coefficient3)of y; and therefore f Vdz must
. 2

itself depend solely ofi ‘theso limiting values, that 15, 7 must

be immediately integrable. We shall however reproduce a
more satisfactor monstration which has been given of the

proposition. )
Suppééﬂ\ V= (@ 4 4>y

:"t\'u and v denote two functions of z at present unde-
tefmined ; let a denote & quantity which we ghall vary inde-
) .\~p611dently of z. Let v () denote what V becomes wl}’en we
(Upuat w + v instead of y, and w' + «v' instead of ¢, and w” +av
) instead of %", and so on; thus

¥ (x) = ¢ (=, u +ov, o ol 4oy )

Differentiate both sides with respect 10 a, 80 that we have

a result which we may denote thus,

d¢ ., AP
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Integrate both sides, from & =0 to a=1

Y (1)~ () f{c%ﬂdq% de

: thus

d,v+d,,v+ }da;'

that is, we have the following identically truc

Plo, uto, o, w1 O
¢‘~:“
=dz u w, v, ..} »

%, ds ¥
+f {duv—f—d“,v +

W) da.

S\ )
Integrate both sides with 1espet:t o x; thus

www. dbraulibrary.org.in

)‘.
[ @ uvn, w7,

s‘.

[q&@:uu uw’,..)dz

+f ﬂk{f{du #5458 s ld“’]’

d:r J

where “the last term the order o
tim{%n

R

o) dz

:\;“ By integration by parts

d dp
E(de’

P v'de = ¢:,— 4 dg [

& dg
L SRkl R dz,

da du

7

f the independent integra~
8 been changed.

'

£

V)
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Thus
r
|$ @ uto, o+, w7, de
=f¢ (x, v, w, w,..) de
dp d dp d .
+f (@ dmcfu”+dx’dﬁ_ - ) o ©
N\
dp _d d¢ bt
ol @-gam )
ORI URURURPIEPS v
1 dp d do dtfs
+ oda[fﬂ{du—-c—ﬁagﬁ du’
& dsf;\
—_— d.q‘}” d Wd%@ﬁ]b‘r‘alyorg in
Now by supposition t the! mla,tlon K =0 is satisfled identi-
tﬁe value of y; so it is satisfied if

cally whatever may be.
%+ aw be put for r& Hence

Yadp, F A _ g
P Al A

present in our power; put

The; ﬁmztmns w and v are at
y—u fmpv and we have

\“, s '
Q qu(wﬁ Y .‘B‘»y:—--)dx

ad
\

(\:\;’ =fqb (m, w, W) u;’, ...) de
v LB G )

+(y—w’)J d!f—icfd%* )

+ . .
sanesw N evesmisesarrenmasneraTsetnT
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Thus ’ Via is here actually exhibited as an expression

consisting of terms, one invelving only ordinary integration
with respect to #, and the others ordinary integration with
respect to «. The funetion # Is still in onr power; it should
be chosen so that none of the guantities which cceur become

infinite or indeterminate; it may happen that conmsten’d&

with this limitation we mav put u=1), A

393. It will now he easy to give the uceessary and “suffi-
cient conditions for ensuring that a functiou shall be integrable
per se more than once. «\

Lot V have the same meaning as l')efoiej

‘We have, whatever V may be, \\\

www.dbl‘aulibraryﬁ{'ﬁ,ﬁwm} dr = [ [7‘&,1’_ -'3." 1 dor

In order then that V may :be integrable per se twice, the
condition must of course beisatisfied which ensures that it is
integrable per se once and then the only additional condition
is that @ ¥ must also Be\integrable per s¢ once. Thus in order
that ¥ may be jntégrable per se twice, the necessary and
sufficient condmgn\ are that the fo]]owmg relations must be
identically tr‘u%em.

OAV_ddy & dv
:“\i;\“ dJ dl" d‘ff dmg dy:a sae =W e
A e _ddVe, & ave
N dy dedy APy
AN
v We may modify the form of (2). For
' de dV dVe gﬁl" dVe  dV ,
dy H dy’ dy; » E_”_Q;W""" H
d dVe_ d dV dV
dx dy dmdy_l-dy"
4 dVax & dvV ddV

dw,,dy, —mJEdy"+2(Ta:E”

N
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& dVe. @ AV, & AV
dﬂ}g dym)

G'z;c'ﬁ dym =@ d.‘l?s W{

Substitute in (2) and omit the terms which are zero by (1);
then we obtain

i} o R
W G ddV & AV o a0

@- d_-l?w+ I{]—BJW—— \
Thus {1} and (2) may be replaced by (1) and (3} N
By a formula given in Art. 35 the ' integrol #f any pro-
posed  expression is exhibited in terms of ou\single inte-
¢rals, From this formula we infer that in‘epder that ¥ may
be integrable per se n times, it is necessarwand sufficient that
vach of the following expressions sho @\Be integrable per se
once: F, &V, 2V, ... P O 4 ‘ '
For example, in order that J* may be bt géﬁ'l% e pertse
ihree times, besides the conditigns ‘(1) and (2) or (1) and (8),
the following must be iden,igiqgsﬂy true,
iVe' 4 AV dVe’
& TR =0 ()
o e & o dy )
We may modi t}}e form of {(4). For
4d7R S, d 47 o 7
d-_.'l',f@!“"_ d.’L‘ dyf d:q”
Gyt AV d AV g4
'"'dr% d = 3?2 d__mQ dy” + 4!‘;[: dﬂ’; dy” + dyu ]
@ and_ ddV o @AV g d dY
i .‘.".’ (f_-m?’ﬁ?? = . dz® dz{nr dd’v”dym dz d!/" 1

e

N

N\ \ n’: |||||||||||||||||||||||||||||||||||||||

vV Substituse in (4) and omit the terms which are zero by (1)
and {8); then we obtain
av _3.2d 4V 434 4V _go (5
dy ~ 1.2dedy” 1.2 da’ dy
.Thus {5} may be taken instead of (4), in conjunction with
(1) and (2) or (1) and (3. '
T, 1, C

28
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Addition on the Variability of the Limits

304.  In the method we have adopted of treating problems
involving changes of the limits we have followed the example
given in two most claborate works on the subject, those of O\
Strauch and Jellett; and we decidedly recommend this
method as the best. We do not ascribe any wariation to'the
independent variable, but only to the dependent vériable.
Another method however has been frequently adoptéd, and it
should be explained in order that the stndent ma.y,hn(‘ierstand
any reference to it which may occur in his reading. In this
méthod a variation is ascribed both to th&\dependent and
independent variables. O

Let @ become z+&x and let y begm}m y+ 8y, 8o and 8y
being indefinitely small arbitrary fulichions of @; it is required
.dbraulibrary.org.i B D
e Rrd e VR of 2, T
dr’ dat®

We denote the variatidoMn dy by 8@—'; therefore
A £ d
5 D @y +o) _dy
dod (e + Sy dw
Oy,
NG _de dx _dy
) T
AN\ da
O
_dy, dby_dydse_dy
~O° de " dz dz dz  dz’
N

neglecting small quantities of the second order.

'L.[‘hus adopting the usnal notation for a differential co-
efficient, we have

S dby  db — <

ot Syf _ yusx - d (Sy(‘i:ny’ 8{1})-
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In this result change ¥ into 3"; thus

S — o b = w
_ iy yie)
M ' A ¢
Similarly 8y — y"”&x - ﬂ%@ ’ p \'\tx“\
and so on. ' ) (.j;;"/
Put o for 8y —y'8x; thus \:\..,:\" 4

. dw "
&y == 83, N
, o W) N
Sy, = dat ":3{i%w_dbraulibl'ary.org.in
L ds "’:;}’ FEr
& ='&£‘;+ y""Ba,
U ORI
Now let ¥ be gm)'t\functioﬁ of &, y, and the differential
¢ L]
coofficients of _y*with respect to x; and let U= f Ve,
2N o
firéd o express the variation of U/ which arises

Let it be regqu
from the ¥ariations oz and 8y in » and y respectively. Let

SVde;l\o't}e“t’he change made in V; then
Y

N £l d + Sm L
\\\ w:f%(msm cdCh) dx—f% Vds

A
0 —_—[led_S_xdw—}—[z] s Vde,
\ S dz v g
neglecting a term of the second order.

Now [V%?dx=V8w-—f[%§]3xdw,
dV.ISxd:»

. m o dd 3
therefore Ln 14 % dor=(V8a),— (Vo) — ,L [Es_
20— 2
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;

whero [(“—] denotes the complete differential cosfficient of

da

V with respect to .

f s e o [P s T 5]
Thus U= (7 ml(V&%+J%IM i | e
av, dv., dVe, dV. R
o e L By Tm S 4 B e, NN
And 817 = To fx 4 ay Sy + a7 Sy’ + 7 By A
AV _dv , av dv . dV .,
dz |~ de " dy Y df ¥ Tdy Y T AN
thus O

av dv. av , AV
F_ o wr ot Hren e
8] Ldm}&n dya-l-d'y'm +@:§¢+
meﬁgﬁlilﬂi‘ary.org.in v ) ;Z:I}’ av
5 {
= - @M @ A e, ) da.
o= (Ve (m’)"ﬂ{% (dy:?’.*dy'“’ Ty
We need not proceed .fﬁi:f,f]er as we have arrived at @
result equivalent to thaf i Art, 368; we have here @ Instead
of the 8y which occurs@herc, and 8z, and 8z, for dz and de,
respectively. O

In geometriga\l\}ppiic&tions it will be observed that @ and
1 become by yariation x4 oz and y+ oy 1‘espectivel_y. Thus
#,+ 8x, will Ccorrespond to the -+ dw, of Art. 369, and

Yy, + :Syr@y'}il“ correspond to the (Y —+ % dx) of Art. 369.
) 1
A

N " Discontinuous Solutions.
T 395. Some problems in the Calculus of Variations admit
of disconttnuous solutions, and as the subject has attracte

much attention in recent times a few words may be here
conveniently devoted to it,

C

Let there .be an integra.l f(‘f_') ax “,fhich 18 required 0 be

a maximum or a minimum, where ¢ is a given function Of_
# and y and the differontial coefficients of y with respect
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to x.  Change y into ¥+ 8y; then ir the nsnal way we
obtain for the variation of the integral to the first order an

expression of the form L+ f M 8ydw, where L depends on

the values of the variables and the differential coefficientsy
at the limits of the integration. Now if 8y may have either
sign we must have M =0 as an indispensable condition{for
the existence of a maximum or & minimum. Y

Suppose however that owing to some conditipns in the
problem we cannot always give to 8y either sigh: Yor ex-
amnple suppose that throughout the whole range ‘of the inte-
gration Sy is essentially positive, then it is yalonger necessary
that M should vanish.  If & is positive\thro1.tgh the whole
range of the integration we arc sure of)g minimum; and if
M is negative through the whole sduge of the integration
wo are sure of a maximum. Wenassume here that we are
able to satisfy the condition L = 0o to e bty forshadl

be positive in the former case-and negative in the latter case.

Next suppose that yuay have either sign through part
of the range of the integration, but that it is essentially
positive through thefémamnder of the integration, Then if
M vanishes throughthe former part and is positive through
the latter part ©f the range we are sure of 4 minimum; and
if M va-ﬂishes.tﬁough the former part and is negative through
the latter part’of the range we are sure of 3 maximum. We
assume gs efore that the condition relative to L can be

satisfieh.”
for llustration we may take the problem which first sug-
he greatest

geshed these remarks. Required to determine tl i
Jselid of revolution the surface of which is given, and which
(" cuts the axis of revolution at two fixed points.

With the usual notation we have to make f y'de a

maximum while me’J g/ (1 +p") de is given. Let a be a

d; then we have by the well

eonstant at present nndetermine
where # denotes

known theory to make % & maximum,

[{y? + 2ay /(1 I
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We obtain Sus=L+ [ Maydr,
o L __aup
= d-l’,' W U I p‘aJ .

whare M stands for 2y 4+ 2a /(1 4+p") —

By the known principles of the sabject we put M =0,
2ay

. el Ay 10 iy gy =0 8 N

b is another constant, which is introduced by the integration.

and this leads in the usnal way to =b—1, Wllé“i\

Since the curve is to meet the axis of @ afGiyén points
we have y= 0 at those points; hence =9, a‘m‘d?t-hc equation
reduces to

2ay

4 '2_0 t"ht" F { '21:"\._’...’_]}:0
www.dbraql’(liralyz_;}rg_yn_ h, Hhab1s ¥ 11\«" :‘l\_-_i- 7 Y ‘

N1+ pY

2a g ™ ] .
Take —=—— —0: thi®déads to n circle which has
. Y1 +pa)+y 0 i::fS.lea
its centre on the axis of @ githits radius equal to - 2a.

Let A and B denotduthe given points on the axis of .
If the given surface~ls exacily equal to that of a sphere on
AR as dia-metcr@ch a sphere fulfils all the conditions of
the problem. M

But if tle’given surface be not equal to that of a sphm:e
on AB as'a diameter, suppose ¢ and /) points on the axis
such, thatthe given surface is equal to that of a sphere on
ODras diameter. Then we obtan a discontinuotis solution
hy\taking for the generating curye the part of the axis of @

sYetween A and C, the semicircle on (0 as diameter, and

Mhe part of the axis of @ between D and B This solution

was first suggested by observing that the fundamental equa:

tion obtained above splits into the two factors ¥ = 0 an
2a
+y=0.
We shall see on examination that M vanishes for the

semicircle on CD as diameter; and for the parts of the axis
of @ which enter into the solution M reduces to 2¢. TDus
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when I is made to vanish 8w reduces to f 9a 8y da, for limits

cprres:ponding 'to‘AO and DB. Now 8y is essentially posi-
tive for all this range, and 2« is negative as we see from its
geometrical meaning. Thus S is a negative quantity, indi-
cating the existence of & maximum. .
~ On this subject the student s referred to the Researdhios
in the Caleulus of Variations, principally on the theory of L8
continuous Solutions, by the present writer. v '
896, For further information on the Ca,lculasf ol Varia-
tions the student may sonsult Professor Jellett freatise, and
the History of the Progress of the Colowlals of Variations
during the Nineteenth Century, by the presedt writer.
The most interesting examples in s subject are those

which are connected with physical 86ienc
ingly” we shall include some

of the brachistochrone; accordrg
I}d.‘in"’ﬁﬁ‘ﬁ"fo‘ﬂ'%’iﬁ'ﬂgbalﬁwmlg-fm

e, as the problem

more applications of this ki
exerclse. .

 BXAMPLES,

1. A curve of gi}en lepgth has its extremities on two
given impérsecting straight lines: determine its form

whensthes area included between the curve and its

chopd\is a maximum.
9 Detorine a plane closed curve of g
7#hall include a maximum area-
,XSée History..., page 68)
3 Required to connect two fixed poiots by & curve of

N given length so that the area bounded by the curve,
N\ the ordinates of the fixed points, and the axis of

: sbscissee shall be a maximum, supposing the given
Jength greater than is consistent With the solution ob-

tained I Art 379 )
(See History..., page 427.)
s to be fitted with 2 tin cover of

the ends vertical : determine the
of material used may be the

iven perimeter which

4. A rectangular dish 1
given height having
form so that the amount
least possible.
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5. A mountaln s u the shape of @ portion of a sphere,
and the velocity of a man walking upon it varles
as the height above the horizontal great cirele of the
complete sphere: shoew that if hie wishies to pass from
pue point to anather v the shortest powible time, he
mast walk in the vertical plane which contains the two N
poiuts,

6. When a curved swrface ean be dividel Ly a plang, m‘tﬂ
two symnictrical portions the interscetion of theplaue
and surface, when an intersection exists, is m~gener'ﬂ
a line of minimum length on the snface.

(See History..., page 365.} .'»‘,\\'

7. TFind the minimum value of

J..j(c_g.ﬂ‘)‘gsinm_}_(,)f—!-r 5111 Q\Q, U

sin 2 \
www dbBal Bhatysophiml Magazine ivrg })wmnlm 1861, and July
1862.) A\
8. Required the mmlmum*mlue of ﬂ ( J\ dz under the

LAY Sy

following conditings ™ y,=1, { ; dp=-1.

o) (See History..., page 432)
9. Required : tht\wnatmn of , Vi, where V' is a function
f-[?/ 'y

- LR L
and v, where »= | F'da, and V71
dy &y
dx 2 da.z prar

N\ ‘ \
) (See History..., page 21,

\”\;'10. Let ¢ denote {m;\;’(l + ) de, and let ¢ {s) be any funetion
fo

of s; then the relation between @ and v is required

de' da’
\z;lso a function of i, ¥,

of.n,'e
(N

& -
which makes [ ¢ () dee & maximum or a minimum
v

ra
while ’ &/(1 4 p") dw has a given value, ¢ being a con-

stant, For a particular case su ppose ¢ (s) =
(See [fistory..., paﬂ(, 453.)



-
Y

N\

.\~f N (See History..., page 301.)
V16, A vessel of given capacity in the fo

EXAMPLES, 3903

11. Reguired the eurve at every point of which

( dy} ( dy
< -_— ‘_,\ - —_— —_
{?f + (m & dr 13)" + (n m) dm}
is 5 maximum or & minimum.

(See History..., page L.}

12. Required the curve at cvery point of which y%’\{s\

Z maximaum or & minimum, the variations of gr and
dy o LN L de
I being so taken that af any p01r}t§~g/m—y &
shall undergo no change by variation. 9

{See Histpry.'.', page 414.)

18, Apply Art. 875 to prove the poi:ﬁ‘é}sﬁmed in Art. 363,
namiﬂy, that the required cyxgein the brachistochrone
problem lies in the vertical plane which contains the
two given points, Ky ..\yww,dLrau]ilibL‘ary,OL‘g.in

14, The form of a homog‘énéous solid of revolution of
glven superficial a;e’a,’and deseribed upon an axis of
given length, 18 auch that its moment of Inertia about
The axis is & aximum: prove that the normal at any

oint of thelgénerating curve is three times as long as
the radjus\of curvature.

15. A giv,en’, wolume of a given substance is to be formed

intd# solid of revolution, such that the time of a

\ﬁ?ﬂéﬂ ozcillation about a horizontal axis perpendi-

\ calar to the axis of figure may be & minimum: de-
N\ termine the form of the solid.

rm of o surface of

revolution with two circular ends, is just filled with
inelastic fluid which revolves about the axis of the
vessel, and is supposed to be free from the action of
gravity. Investigate the form of the vessel that the
whole pressure which the fluid exerts upon 1t may be
the least possible, the magnitudes of the circular ends
being given.

Result. The generating eurve is n catenary.
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17. Find the cquation given by the Unlenlns of Variations
for the travsverse section of o straicht and uniform
canal, when one of the three quantitics, the surface, the
capacity, and the normal hydrostatic pressure, is either
o omaximum or a minimum, ad e other two are |
given, the tenuinal surfiees and pressures not being
taken into account.

Ko\

Shew also that when the surface is o minimum apdithe
capacity only is given, the scction is civculaty” and
when the normal pressure is nomininumg {h8\scetion
is a catenary or two straight lines, ;.L.L:m\)l;{!’ing as the
surface or the capacity is given, O\

18. TIf there aure two curves with thgi\éoncavities down-
wards and terminated in the sabie extremities, & par-
ticle moving under the actifin)of gravity will take a
v dbraubibrary en8dMo describe thowpper enrve than the lower
curve, the initial velocitybeing supposed the same 1n

the two cases, ™

(See History..., page 3&‘8)

19. Assuming thatoa ship’s rate of sailing is a function
of the amgleéwwhich the direction of its course makes
with th;i%irecbion of the wind, shew that the bra-

chistechrvnous course between two given positions 18
regbiliear, and that unless it be in the straight line
joiing the positions it is in two directi_ons always
{‘making the same angle with the direction of the
A\ wind.
,\'f N (See Philosophicul Magazine for September, 15862

\J 20. A solid of revolution is to be formed on a given base
with a given volume so as to experience a minlmuit
resistance when it moves through a fuid in l‘.be’dl-

rection of its axis; determine the figure of the solid.

(Bee Researches.. .Chapter X.)
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CHAPTER XVL C
os“s"
\K \
MIACELLANREOUS PROPOSITIO Q\§

397, 1In the present Chapter wes Fhfmvestlgate a few

miscellaneous propositions of mtewﬁbs
¢y w dbraulibrary .org.in

308, It is required to tran.q\ﬁnm the series

n

m mtil-w m@(l-—m)‘ b N
into a series arram'géi accordlng to powers of x; it being
supposed thagl é’-\-— is less than unity.
\\ J . .
¥_, The given series

l’ut'}”t =¥, BO that x = 1—_’_'3!

§ )

X ¥ e .8
R\ =~—[ o l-y+y Y +...} dy

™
g ¢ L

lfﬂy
14%

1 yMﬁfy ’”G——%—- dy
How o 1+¥ uy : SH‘I)

¥ fJ“i‘/
“m Jeytl
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Then by repeniel integration by parts we have

(G 1y
Joy+l (m+Dy+1} " m+ Ly oyt 1F
ym+l ?}Imiﬂ
= G+ Dy +1) + (e 1 (i 2) iy 4 1) O
9 [V g dy O
TSN T 5
(m Ly (m+2)fo {y KD
and so on. N
: ry ol ¢
Thus we see that l,,, ¥y o)
y Jo 1 -+ y \ ¥4
1 x z N
o -+ . z + .- 2% ST T T
m o m+1l (mt+D{m+2) (a%T)(m+2)(m+3)
www.dbraulibrary.org.in \

::2::'3.'(:" 1
+ N R
(m+1)fou+ 2) (n + 3) (m -+ 4) :

Hence the required transforination is effocted,

<

~, 1 . . .
For cxample put{m = 5 and divide both sides of the

2
equation hy 2: h}{i@*}
ay =z 1 2 i 4
ST s T
N z O 4.0
A~ o fe 2 2487
O 1 {3*3.5*3.5.7+“‘J'

"\.}’g’va we put sin®d for & this gives a known transformation

\"\ “or tL: see Differential Calculus, Art. 374
/ an 8
399. In Art. 62 1t is shewn that if we integrate a
function of two independent variahles, with respeet to bot-h_
variables, between fixed limits we obtain the same resulb
when we adopt cither order of integration, provided the
function remain finite between the a.:asigned limits, Con-
versely if by changing the order of integration we change
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the result it follows that the function must have been in-
finite within the range of the integrations. This principle
has been applied by Gauss to shew that every rational inte-
gral cquation hag a root Teal or imaginary.

Consider the expression

2 pa P A TPt Py

..\:\’
Put 7 (cos 8 +/— 1 sin ) for «; then the proposed expies-
sion takes the form P +QJ 1, where ;"3’«.
P=r"cosnd+preos(n-1)8+..+ pﬂ_l',‘:‘s'g’é\‘{? +p,,
Q=" sinnd+ps™ " sin (n —1) 8 +...+p“_;'f':sin 8.
Lei F=tan™ vg ; then \s\ !
é’f $ @@Iw.dbraulibrary.or in
av N as ¥
dd = B+ [
2 )
oY T
(e~ T P
N +¢

Hence gz involves (P + (* in the denominator ; and
AR/ "
if we afn>shew that il
NG # drdd
: ran%m’f values for @ and #, it follows that P and ¢ must
i

simailtaneously vanish.

becomes infinite within a eertain

5" We shall take 0 and 2 for limits of 6 and 9 and @
\“ for limits of r, where a is large but finite; and we shall
first

i 4 hese limits. Integrate il
integrate —~=p between these s. Integrate ;oog
14 .
with respect to 8; thus We obtain —-: DOV take this be-
9ar, then the regult is zero, for P-and
s have the same value

by adopting this order

tween the limits 0 and ;
Q and their differential coefficient
when @ =2 as when g=10. Hence
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of integration we obtain zero as the vesuli of the first inte-

gration, and therefore zero also as the final result.

& :

PR (% .

il st with '
[P d

Now € ?E"ﬁ and 1?'\3%

vanizhes when{n= (.

Now adopt the other order, Integrate
dr
g’
. dl”
both vanish when »=10, so that Ji
, codP o ay
When #=a we have for the value of ¢ == — PQ a4 series
dt e
proceeding sccording to descending powersNfya ; the first
term of which is —na™ (cos®nf + sin’#6). Bat'is —ne™: and
@ may be taken so large as to renderpalthe other terms
insignificant in valne compared with &liis. In like manner
P+ @ may also be made to diffde as litile as we please
wwirodhrigelbear veorr, ithat is from &’

regpect to r; thus we olitain

. m C&" =—"H,

that is we have a resplf\differing as little as we please from
thig by taking a large"enough. Then, integrating with respect
to & between 0 and 2%, we obtain — 2nr.

a 2V~.:,:~
Hence J LA

Thus by pel}fnrrﬂing the integrations in different orders
we obtain %wo’ different results; and therefore the function
must begothe infinite within the range of the integrations:
and thexéfore P and @ must simultaneously vanish within
tha.iio%n'ge. Bertrand's Caleul Intégral, page 188.

/% 400, Tt is shewn in Art. 177 that if a curve having the
“\‘equation y=A + Bz+ Cz* + Da® be made to pass through
" three given points the ovdinates of which are equidistant,
the area bounded by the curve, the extreme ordinates, and

the axis of 2 is equal to % (y,+ 4y, + 5,) ; where y, ,, and ¥,

are the ordinates and & the distance between two consecutive
ordinates. It will be observed that an infinite number of
such curves can be drawn, since there are four coefficients
4, B, C, I at our disposal, and only three conditions to de-
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termine them: thus we might make the curve pass through
any fourth point we please. Nevertheless the ares men-
tioned romains always the same, ‘This resulf admits of gene-
ralisation into the following theorem:
TLet a curve having the equation
y=d,+Adz+ 47+ e+ A, .
be made to pass through 2n —1 given points, of which the”
ordinates are equidistant, then the area .boundec‘l hy\the
curve, the exireme ordinates, and the axis of = ig always

7

the same. >

The demonstration ia of precisely the sdule }(ind what-
ever may be the positive integral value of % j\We will suppose
for simplicity that n=3. LD

Let y,, ¥, Yo Yar ¥, GEDOTE the ~6Qinates of the given
points ; and let & be the distance MW&&Elfaﬁﬁﬁpgg§Cg}1Vﬁ1
ordinates. Suppose the first ordinate to correspon: to the

abscissa = 0. Then from the wlements of the Theory of

Finite Differences we haves A\
© & (o —) z (& —h) (x =20} ps
y=y1+ﬁAy1+WAgyi+ kalg Ay,

| in=i
m N

L\ + o (o= h) (e—2B) (2= 3H) o,

N\

o h*14

O\ _ . —4R) .,
N +$(£—h)(a: 2}?:2(59, 3h) (2 )Ay,,
O 15

V\-‘h’é%" Ay, =4, — Y Ay =y, =¥ (v y,) =Y 2y, + Yo

£ Aty involves ¥, ¥y +o- UP to
Thus the value of &7, yt 2 7;:, o g,

ponding to

¢ 's’gu:{ d so on. ]
\y,; and the value of A%, involves g, ¥y, P
/% the ordinate of any arbitrary giwth point, corres

an abscissa 5h.
i g hat the
Now the area which we requu‘e:fu ydz, so tha
term which involves A%, ig

B, [* 1 (- by (o — 2h) (o — 30) (@ = 4R} &2
], s e )
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In the tutegral put &+ 24 for 2, then it becomes

(™ (& +20) (g4 Wy E(E—1) (2= 28

v =24
that is, ’ . (E— — -_IJ,JFJ (gl _ f,:,p‘j gd&,
So—0h

and this vanishes by first principles: sce Art %... ‘Hence
40
[ ydw docs not involve A%y, but only Ay, AT A 1p to

A“?;l, and so when expressed in terms of arL,,?)g"... involves
these ordinates np to y, inclusive.  This tablishes the re-
quired result. Y,

It is scarvcely possible that a 1(,\1‘1r, 50 general and so
le h'IS not been alroady givehy St flie writer has not
ww%ggv] ﬁ:{]“y .org.in « \J
o\

N
N
3 o

401. Trom Wallis’s Lm mula we inav desdnee ip wn cle-
mentary way the mrlm‘lm for the approximate value of
1.2.8...@, when uzghvery large.  Professor De Morgan
seems to h‘l\b {'llbt"h}ﬁflt(-'d this in his Hrr;menﬁ?al and Inle-
gral Caleulus, phge 793 ; and the process las been put ina
very simple fgwm by Serret: see his Cours de Chaloud Dif-
Férentiel et ln’tcgmf Vol. 11. page 200,

Acc@g mcf to Wallig's Formula, as given in Axt, 36, we

have\, )

> = 2. ' (ZJ* —_ 2) (2&?— 2) % . (1)]

‘\'”\ :. :2 '|__ _3 [ 5 (23,,__3)"33;_._1) 2»{/“1,..‘....
N/ when xis mfinite,

Now let ¢ (z) stand for %, then it will be
’ o D
found that (1) gives, when  ia mﬁmte
Ir 4
@

(20

O\

¢~ d
oA
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and therefore by extracting the square root we have, when =
ig infinite,
" (b (=)}*
. ) TR RUUPUPOP 2).
4 20) ®

From the form of ¢ (&) we obfain

$le) _1f 1yt A
m=g(1+5) .................. ’(32;‘..\

therefore log — 28— _ ( 1) ( 1}
erefore lob¢($+1) 1+ 243 log 1+,m\:. \

1 1 1 O
=—1+(w+-){—————+—---—-}"
2/ e 227

@ 20 3_503\;

_1 1.3 @ (- 1
R Tr R TR R TY s §PD o ()
\wrww. dbraulibrary.org.

In this series the terms (ave alterna.ggllgr]ploasgﬁ\?é na

negative. The numerical valite of the ratio of the term
e 1] 1

which involves 2 to th“preceding term is P e S

which is certainly e than unity when = ig greater than 2,
provided & is not 1Sy than unity. Hence the value of the

series is less t'h&};?—w“ and therefore

s@ 6,
"<>,,. 10g W} _.’132 ..................... (5),

. 1
w,h'é; g, is some positive fraction less thas 5.

ad
NG

From (5) by successive changes we obtain

@) L 9@, ietE2=D
logWT)'“ngw)“L”'“” ¢ (2)
8, 4, 8.
=E§+(ﬂ--1_)§+"‘+fr_:_l? ............ (6),

. 1
where 8,, 8,, 0,,... 8@ all positive fractions less than g5 -
26

m T 41
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Hence the sum of the terms on the right-hand side of (6)

1 .
, % «, that is less than .
12z

is less than 395

horefore Jog &) s leso than ;L and therfors whe
Therefore 10g¢ @5 15 less than {92 and thercfore when

¥
« is infinite A
¢ (@) :
=T i TINS
® (27) f‘))
From (2) and (7) we have when & is infinite &
¢ (.’.C) =1 H \::\\\.

and therefore
1.2.3...x AW
————— 1 4+ g¥ '\
ela 2 felx\ v

wihosb @alabishosorhan @ is infinite.
Thus the required formula }Q E{s’t.ablished.
402. We proceed to sd?me further developments which
are due mainly to Serref,

A limit closer thf’;‘}‘\ that assigned by (4) may be found

: A
for log 5 ?;;(-T-)_l) \ :\

For we fave

O $ (o)

) 1 1 3 (n —1)(=1)"
\’\:; =@ +m){ﬁa_:§—1'%"'+m_m+ 2ﬂ(ﬁ.+1)w"+”'}
RO W S 2 [

5 30E T T T ) i g

In this series the terms arc slternately positive and
segative. The numerical value of the ratio of the torm
which involves & to the preceding term is

nin—1) 1
nin—1)+2(nm—38) "2
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which is certainly less than unity if » is greater than 2, pro-
vided @ be greater than nnity. Henee

(1+%) logqb ¢ (a:_)r is less than 1;.1:

and therefore

o qb_( 3_ 1 O
log 6ok is less than ;75— ST E {.;\x..;.
408.  We have identically “.’\”}5
2 '\ 4
log ¢ () =log cﬁ( ) +1 ¢+ A+ D ‘.\
&) =108 o 1) T G B
\\
b (o + ne) I
41%¢ +m+}; (£log ¢ (z+ m+ 1)

Let ¢{x) have the form a,mcmct{ in Art. 401; and suppose
w infinite.  Then “f:, WWW. dblaullbralyorgm

log ¢ (i ;—m+1)—10g l=0;
and we obtain "
oar \”\ ¢ (x+n)
\K B glztnt1)
where = md]tatcs a summation with rtespect to a from
n=1{ to % f\z =,
Bq’r\;;is in (4) we have
 §
’\\sl qf, (“1‘;-1' i - ( 1) ( .__.._) 1.
.\ l°¢(m+n+1} Nty logt} + == 1;
\therefore

\'"> log¢(m)=2{(m+n_i—2) log( xiﬂ)—l}....(&).

404 From the definition of ¢ () we have when z is a
positive integer

log I'(w+1) =%10g 2 —x + (x+%) log 2
+ log ¢ () JUDRRURPRON (1) 1

) =% log
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therefore by (8), when @ is any posiiive nfeger,

logl' {(w+ 1} = % log 27 — i + (r + ]3 Jlog e

W, 1 ‘.-
+3 Kq it g)log (1 - - 1 (10)

But this equation can now be shewn to hold when :.r;’hf.m’
any positive value, O

For denote by + () the cxpression on the glght-hand
side of (10); then it may be shewn by diﬂ‘ureutia,ting twice

that .~~z\
| v
N z AN
M CETERY o

b Eagisn (2) of At 20600
y oy @ logNd + 1)
V@) = ,_ N2
Hence, by integration, (N
log T (- 1Y = (@) + Az + B,
where 4 and B are .aﬁ)itmry constants.

But we knoW that for all positive integral yalnes of @
we have log I + 1) = (w); hence 4 and A must be zero,
and thereforp tquation (10) must hold for all positive values
of @ N

95 By Art. 403 we see that log ¢ (¥) is equal to the
sum ef a series of quantities, which are all positive hy
equiation (5). Hence log ¢ (z) is positive. Hence by equa-

(“\tion (9) it follows that

1\ ) log I (= + 1) is greater than ; log 27 — 2 + (a: + ; log @

I _—
and therefore T (z +1) is greater than ¢z NEZZA

We shall now find an opposite limit for T (= + 1).
By Arts. 402 and 403 we ses that

1

. 1
loc & () is less than = 5 -
og ¢ (x) is less than B i wtatl)’
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. . 1.1 1
hat : e I e 4
that is log ¢ (2} is less than 122{x+n w+n+l}'
. 1
therefor 5 1 =
erefore log ¢>.(a:) is less than 55"

Hence by equation (9) it follows that N

. . 1 1 RS}
log I (- 1) is less than 5 log 2n — @+ (m +§) logm.-lim v

and therefore &N
§ N
T (z+1) is less than e'"ﬁx“J%rm\.’.\}

406. We proceed to an investigation of Spirling’s Theorem,
which amounts to an expansion of log L{w™- 1) in a series
proceeding according to inverse powers ob.z.

From equation (8) we obtain by~’di\ﬁ'erentiating twice

1« patw . dbraulibrary org.in

TTde @ o0t (@+n)"
But for any positive \jpil,ié of # we have
% =f€.§“da, }=f0 e~ ada.
There{’ore,‘ib&‘\is positive,
£ ) w E -]
fkgw; - ( i (1 + E) da -+ [ g~ g~ ada.
) Jo 2 Jo
xt\n' 1
e b
\gi?c PN =t that

N Plogdp (@) (7 _waf & _%_ )
O N (o
Integrate twice wi

and E’% log ¢ {w) both vanish when z is infinite. Thus

\

th respect to &, observing that log ¢ (z)

B A

®*1r « ay .
- = 142V egarda,
_-.fu ag(s“"l +2)3
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Therefore by (97 we linve

A | 1
log T -1 1) == 3 log 27— + (m + E) log @

<\

. @ . . Y\ K¢
Now suppuse o] expanded in powers of 2. DBy Agls. 95

6% =

and 123 of the Differentiul Celoulus the resnlt is &

i v——-:a+£‘- * Ha :c‘—i—g5 L ‘W) PR

N
1{?&, as in Art 304,

here 73, B,, ... are the Numbers of Ligiy
anid their values arc po

S 3
AN

www.ﬁbﬁldlibraﬁyﬁré,jn 5 i ‘f}»
1 6 ) - = =

‘ 1 5
a 30 ) )5 - “I:'g}:::‘

T 7
50 gyt

.3

- O e . ; ;
and F*(64) denotes t-]lil‘tf.éi—- - i8 to be differentiated 2r+ 2

1
times witlh respeet togh hnd then &x put for =, where fisa
posilive proper fra;@gu\.

X\
Now, obse;‘m}g that by Arts. 259 and 200,

:‘i\’; ’. g g dy = |_3_?E, ,
N 0 at
we lﬁif}f‘ﬁnally
O\ 1
’*‘I«,\[‘ogI‘ w+1)=5 log 2m — 2z + (a: + 2) log .«
N -
O~ CB By LBy
do T e T e
1 e gr oeryd
" Ifzﬂ"éja 6= o [T (9%) .

This formula includes Stirling’s Theorem; for that am punts
in fact to removing the definite integral at the end of the
expression just given, and allowing the serics to continne
indefinitels.
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With respect to the early history of Stirling’s Theorem
see the History of... Probability, page 188,

407.  As an example of the formula obtained in the pre-
ceding Article suppose =0 thus

logr(w+1)=%10g2w—w+(m+%)logw N
AN

1% o NN
+§foe f(‘&;)dat

' ] 79,
Now  f@=g0y @
oo e(l—a)—1 v
a) =———F )
JS@ (& —1) ) ‘:\\,
noy— Ol =D e hrd
S@= "'_'_W:i}mfMbl‘aulibrary,org,jn

G _ea' {(3_ g‘)'»s‘zg . 7 3}
J7 )= RACE )

It js easy to shew, by expanding the numerator of f"(a)
in powers of 4, thaly"{«) is always negative so long as a is
posttive, Henc'e:f“(a) continually diminishes as a increases
from 0 to oo;s%m\]‘“ o can shew that £ {«) is positive so long
as « is: heice the greatest value of f(z) for positive values
of ¢ is whew'a=0. By eva.luf.tion weo find that f"(e) is

P4,
% wher\w'= 0. Therefore
P & .
\/ 1 1 A
“z‘\\ logT{z+1} =3 log 2w — & + (w+§) log & + 135
N ) where * is some positive proper fraction.
> This rosult includes the two limits obtained in Art. 405,

S

408, Differentiate equation (11}; thus

d \ 1 ®1s @ ay
d_a:logl (w+1)=logx+2—5—fo E(e-n—_—l—l"l 2)9 ar o

=loga:—-f|w§(eui1 ~1)eria
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But, by Art. 288,

Iogm:f 1(3‘“—8_“’:) d{l;

0 a o
- d TreTe e ‘

therefore 7 logT'{z+1)= fo ("&— Ty i) da...... (12)"’\:\’

Therefore by putting = =0 we obtain \ ‘\.

R aten ] G-

Hence, by Art. 268, we have anotheK\J{orm for Euler's
constand, namely
A 1\ e
Jo (1'—3_“ “,)‘\ e

o/
www . dbraulibrary.org.in

409. Integrate (12) and dgt.enmme the constant s that
the expression on the left h}md shall vanish when z=10;
thus N\

-a —ar ]_
log I’ (a- -}-,1\)\ I {.re + f(_ea - l)} da
\
,\:\ =[m£fj' —Ing-w}a—"x'
o~ Jo W FT TS

N\
this presenf@ Iog [ {z + 1) compactly as one definite integral,
but tl-\form ‘given In (11) may be 1n general more useful,

' &

i»\ 3

"\ w4

A4

THE END.
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f [ 286. To find the value of f o5 e
&

Denote it by u, then

it ® _(a-,"+‘f) dc
—_—— 2 ey - P
da a_[o € {._,"‘2 ! \
@ - L\’
assume z =, then the limits of 2z are o and 0; at{d‘“we
obtain A
du A D
(E - — 2?45; 2 'gi"
\:"\\
therefore dlog Yo g ; )
da N
therefore logu = —,2@\-: constant;
e w igmsflifrary org.in W= Hé—;ﬂ_
To determine 4 N VT,
0 determine A we m;suPPOSQ a=10; then u=-g ;
therefore 4 _vT ; thus
2 '\

o\
,rm ¥ ~/
¢ o = T o
. \\q‘.o & ( x’) d.’)’: = ——E-):— a8 ",
L )

287. W‘é may also apply the principle of integration with
respect /40t constant in order to determine some definite in-
tegg.l%, the principle may be established thus.

O 5
et w= f b (2, o) da,
:..\‘v 23
,.\; ® . g 8 b
) then f ude = f f ¢ (@ ¢) de da

=f:]f¢ {x, ¢) de dc;

since when the limits are constant, the order of integration ig

i%?;iiiﬁgé:ht' 62). Wo shall now give some examples of
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.288. Wo i(now thet I e da =1.
- - O— k

Integrate both sides with respect to & between the limits
a and &; thus

pm e-am:___e-b.v E}
y '\ *
1t should be noticed that f d f ——L are both-

infinite ; for f e, is greater than ¢ f da{, and f dz

is mﬁmte But thIS is not inconsistent Wl,th the assertlon
b:v

that [ = —C dris finite, and WItI% b ﬁ}f(}amg the value
braulibrary.org.in

of this mtegml it is easy to shew tidat 1t must be finite.  For
it is equal to the sum of f M df d ("c) dw

¢ (2) =6 ¢™; the second of these mtegrals is ﬁmte for
et —he
it is legs than f ¢ (::;) dx that is, less than = (% - %—)

We have then -on’igétéi’éxa,mine f ﬂim(f-) de,
\ o

L >

Now b¥~M$Mn’s Theorem
- :Z,\w a2,
\\ ¢@)=(-a)z+ 3 ¢ (20),

whtere & is some {ractlon thus [M $la) 18 less than b—a+ f;'”,

\ Where 4 is the greatest value Whlch ¢" (%) can assume for
values of o less than ¢. Hence

f‘ﬁ()dwmlessthan(b a)c+Ac o

and is therefore finite,
T.LQ, 18
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2589, We know that
k
k24t

Integrate both sides with respect to & between the limits .
¢ and b; thus

T e . 4 (\)
— eosra de =% log 5—. e\ e
0 & sl « \J/

A
f e cogre do =
1]

o )
sin 7% R cos v
290, Let fo o dz be denoted by A,. E}Q\‘O 1 +w3dw
by B; we shall now determine the values\ofvd and B the

former has already been determined bx\\sgnother method in
Art. 285, ,\*; ) :

o abr TR Ategr A put y for rog s

1n
A=J’ ~~°31.niydy;
oyt ¥
this shews that 4 is indepehdent of r.

We have @R\ " wsinrade

\\‘ Jo LT4u 0
7N r 0 r " d$
and f Bdr= j anrear
NG o =l 1+’
thus§~{:.\]f3dr 4B _ ["l4oefsinrs
N Jo dr oz l1+a° 3
~N
S o ap
~ence f Bir—B 420 s .
\ 3’ 0 dr
\/  Multiply by ¢ and integrate; we obtain since 4 is con-

stant with respect to r

I. ¢’ ‘Un Bdr+ B — A} = constant.

Now whatelver be the value of =, it is obvious that the
integrals represented by 4, B, and f ’ Bdr, are finite ; hence
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the eonstant in the last equation must be zero, for the left-
hand member vanishes when # is infinite,

Thus o Bdr+B—d=0................ 2.

. : - Je
From (1) and (2) %:?=—B; | | O\
therefore B=0g, A ™
where ( is some constant. And from (2) N L

LI

therefore B=Ae S, 8)
Now when = is indefinitely diz?jﬁﬁished, B becomes

*® d . wanwwdbraulibrary .org.in
T+ix2 , that is -g ; henee f‘rouﬁfﬁ)’
Jo o\

N

4 2721' and B =12Te"'.

We have supposedspositive ; it is obvious thal if 7 be
negative, B has the"shme value as if » were Ppositive, and
4 had its sign chx'm}ged; that is, if » be negative B=-;~r s

7]',”';

and A4 =—'§;,.(JTi'ansactions of the Royal Irish Academy,
Vol. x:§{ﬁ§77.)

1+ ]

MIér})m f el dx=.7—r 67, we obtain by differentiation
" ® 0 '
M\;ﬁ:{l’h respect to r, :

Lo T1¥@ C2f
And from the same integral by integrating with respect
to r between the limits 0 and ¢, we have :
f smexdy w7 (_1'__ ).

o &(l +a%) -3

N/ l"” esimerdy T

18—9
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291. The preceding Article contains a rigorous investi-
gation of the values of the integrals 4 and B; another
saethod has been sometiines given for finding the value of .
B which is more simple but far less satisfactory. We will
however now give this method, as it will lead us to uotice a

point of importance.
wor 2 ~\.
Lt b -—-J Rrd ~N\
0 1 +$2 o & :‘3
dR " & sin T SO
then &= ' 9
o i M e S,
&Il.d dﬁ — fm M da'; 2
art o 1 +e_~”z‘g g "\\"
© ~
W) cosTre
= L
L cosmcf:cj; . T %
www.dbraulibrary.org.in »

o N
=- [ codn da + B.
Jo N

No;v we will assumﬂ\"é;n grounds presently to be examined,
that [ conra dn 0ykh
.a , C08 1'% :tzisQ‘, 113
e d'B
: O a7
and weRve to find B from this equation. Multiply both
sidés\by 2 fl—lj and integrate with respect to r; hence

*

'..\‘V,
& & aby’ _ .
Q (G) =h+ B
where % is a constant, that is, % is independent of ». Thus
dB )
o Ve B
dr . 1

therefore a5 m , |
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by integrating we have

B g
Pk [ = log (B vl + B,

where k is another constant, : . N\
_ Thus € =Bt + B _ p \”\
By transposing, squafing, and reducing we finally Qb}\a,m
- B=Cg + O¢ ..C&‘.

where C and (| are constants. We must nqwﬂe}ermmc the
values ot these constants, Since B cannobiticreasze’ mdeﬁ-

nitely with » we must have ¢, = 0 ; and thQ\n'smce B 3 T when

=0 we have Oe= g Thereforghw }bl -aulibrary. oTg: in

\7
A

B T *— B:'
Wea now proceed ta consider the assumption involved in
the preceding methot{\

l
Bince “&52\};.1: dr=—¢*" a___sm ot reosve )
a4t
7 ' “'
C\} #5in 8 — g cos rx
and e eosrpde—e™™ —— 0
(N a+r
s"\.‘#
’haw ” 0 gin v di = ——.
¢ T =
wehave \ e
i"\‘:: : o d a
& N ' & cos rede =
N and o - '+’

if @ be a positive quantity.

If it were allowable to suppose @ =0 we should obtain

f sinrwdx:l,audf cos rz dr =0,
0 r 0
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We may put the result in the following form; -
f”log (" — 206 cos @ + 6% do = 7 log &°, |
1]

where 47 is the greater of the two quantities o and ¢, and
is equal to either of them if they are equal.

By differentiating this result with respect to @ we airive
at the result which constitutes the last Example of Arf. 46.

-
a
< 3

Ky
o\

N\

293. By integration by parts we have

flog(l —2a cos z + o) dx

log (1 ~ 24 cos & + N2 (Bsnads

=z t—Zacosxta}—2g poy —.

ST w5 MBS %Y By in
Hence, if @ be less than 1, ,:.."" *

*  wsinadr

o 1—2acose+a’

if @ be greater than I $he result is

_ ‘E ..t:‘; i} s : . 'J_'l' .
=5 l?%’*(l + a)®, that is, - log (1+a);

78
ZT \s,/ . T 1)
p log (1 + a) —-g‘iog a, that is, 2 log (1 + )

W/ . .
294, ;\Iln like manner we have, if » be an. integer,
v - r
~[\Cos rwlog (1 —2acosz+ ) de=—=d, or—= a™,
o LT r r '

:"\’éééordin.g as @ is less or greater than unity.
4 -

293, Integrate by parts the integral in the preceding
Article; thus we find

o 1—2acosz+a 2

T oginy moal
f sinzsinrede _m oF X g,

according as ¢ is less or greater than unity.
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296, Similarly from the known expansion
o A-d
1—2acos x + o

=1+ 2zcosx+ 2a’cos 2w+ e’ cos de + . KA
where ¢ is less than 1, we may deduce zome definiie mtegrais*\
thug if » is an integer N\
\ "4
" cosrzda e P !
..... { \

o 1-%gcossta 1—a’

4

N\
for every term that we have to integrate y¥ahishes with the

v

assigned limits, except 247 f cost rz dm. N

O
o ny
..x\\'
297, To find the value of M
W W dblaullbra?y grgt' ° ¥ ueOJ. ’1+w21__2dmcoscx+ag'
The term 1

1= %a oo ca&»f;'a” ma._y be expanded as in the

preceding Article; ho\ each term may be integrated by
Art. 200, and the remlt[ss summed. Thus we ghall obtain

\\ m 1 l4ae”
:.‘: 2'1—g*1l—aqe "

Sumlarly\ /
%ﬁog (1 —2acos o + %) =

NS 298 It 15 also known from Trigonometry that
'"\ W 4

i +f—- mlog (1 —ae™),

sin ex : . :
TS0 cos e 3 o = S0 6% + @ sin 200 + o° sin Se + .o s
@ being less than 1. Hence by Art. 200, we obtain
{m @ sin oo da 7
o A+a)(1—-2acoscot+a’) 2(F—a)

This also follows from the last formula of Art, 297, by differ-
entiating with respect to ¢, ' '
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1
299, "o find i_eg;m_ dz.,

oL =it

By expanding (1 - 2)™, we find for the integral a serics
of which the type 13

1 ..
N >
f z" log w da. . )\

L] ;"\
By integration by parts this is seen to be equal to
T Hence the rosult is

_hal L1
ETETE T )

. w* v
that is, by a known formula, ~ G wandbraulibrary.org.in

"\
)

N/

LN

then if £ denote any functionsiya

300. Let v denote ¢® V(-1 oghht Is, cos 2+ 4/(— 1) sinx;
8 have by Taylor’s Theorem,
flat+o)+fla+vy O

\
AN # .
=2 {f(a) +<’\fa,j cos x +f1—{g-) €08 22 + ...... } .
And “
R
o - A "‘:.: ; 2 : b -u.‘nu
1—2009&@. o 1+ 2¢ cos @ -+ 2¢* cos 2a + 2¢° cos Sz +
'.Bﬁg‘éfore

TR e o g v}

= f(ato)

In this result it must be remembered that ¢ is to be less
than unity, and the funetions J (@ + ) and #(a -+ »™*) must be

such that Taylor's Theorem holds for their expansions, and-
glves convergent series, :
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